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Abstract—Speech enhancement methods have become effective
at estimating a clean magnitude spectrum from a noisy speech
signal. However, they are much less effective at recovering the
noise-free phase. At higher signal-to-noise ratios (SNRs) this is
unimportant, but at lower SNRs the noisy phase introduces a
perceptible distortion to the enhanced speech that reduces quality
and intelligibility. Complex masking methods have addressed
this problem to some extent but they report underestimation
of the imaginary mask which in turn limits the possible phase
correction. This work first analyses the problem of imaginary
mask estimation and examines further its effect on both phase
and magnitude masking. Second, a CNN-DNN architecture is
proposed for complex mask estimation that uses a new loss
function aimed at giving errors in the imaginary mask component
a greater contribution in model training. Experimental results
are presented that consider variations to the loss function and
demonstrate that improved speech quality and intelligibility can
be achieved.

Index Terms—Speech enhancement, complex masking, loss
functions

I. INTRODUCTION

In most real-world speech processing applications, back-
ground noise is present and causes a reduction of speech
quality and intelligibility, and, when used as input into a
speech recogniser, a lower accuracy. Methods to enhance the
noisy speech can be applied to a broad range of applications in-
cluding telephony, hearing aids and robust speech recognition
[1], [2]. Traditional methods of speech enhancement include
spectral subtraction, Wiener filtering, minimum mean-square
error estimation (MMSE) and masking which derive filters that
are used to suppress noise [1], [3], [4]. More recent methods
use deep learning architectures to learn a relationship typically
between the input noisy speech spectrum and a set of target
features. These target features may be clean spectral features
that allow an enhanced speech signal to be recovered directly
[5]–[7], or they may be a mask that is subsequently applied
to the noisy speech to produce an enhanced signal [4], [8].

Masking has been shown to be highly effective and capable
of outperforming systems that map the noisy speech onto a
clean speech estimate [4], [9]. The most common approaches
use binary masking or ratio masking to enhance the magni-
tude spectrum of the noisy speech, which is then combined
with the noisy phase and returned to the time-domain for
reconstruction. Current approaches to masking use various

deep learning models to estimate the mask from noisy speech
and include feedforward, recurrent and convolutional neural
networks [10], [11]. At higher signal-to-noise ratios (SNRs)
magnitude masking methods are effective, but at lower SNRs
(typically below 7dB) the uncompensated phase introduces
perceptible distortions that reduce quality and intelligibility
[12]. Complex masks have been proposed to enhance both the
magnitude and phase of the noisy speech signal [13]. However,
a common issue with their estimation is that, while estimates
of the real mask are relatively good, the imaginary mask is
often underestimated. This is attributed to less structure being
present in the ideal imaginary mask compared to the real mask.
As this forms the target for model training, the lack of structure
makes learning difficult [14]–[17].

The aim of this work is to improve estimation of the
imaginary component of complex masks and thereby reduce
phase distortion in the enhanced audio. An analysis of com-
plex masks is made that examines how underestimation of
the imaginary mask affects the magnitude and phase of the
enhanced signal. A modification to the mean squared error
(MSE) loss function is proposed that enhances the contribution
that the imaginary mask has within a CNN-DNN architecture
for complex mask estimation. This is motivated by several
studies that have shown how modified loss functions have
given improved estimation across a range of audio processing
applications [18], [19]. The remainder of this paper begins in
Section II with the analysis into the effect of the imaginary
mask within complex masking. Section III introduces the
proposed loss function and architecture for estimating the
complex mask. Experimental results are presented in Section
IV and a conclusion made in Section V.

II. ANALYSIS OF COMPLEX MASKING FRAMEWORK

A noisy speech signal, y(n), can be considered to be the
sum of clean speech, x(n), and additive noise, d(n), where n
is the discrete-time sample. Transforming this into the spectral
domain, the noisy speech signal is

Y (f, t) = X(f, t) +D(f, t) (1)

where Y (f, t), X(f, t) and D(f, t) are the noisy speech, clean
speech and noise complex spectra at frequency bin f and time
frame t. Conventional masking methods, e.g. [4], estimate a
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magnitude mask, MMAG(f, t), and multiply this by the noisy
speech magnitude to estimate the clean speech magnitude
spectrum, |X̂(f, t)|,

|X̂(f, t)| = |Y (f, t)|MMAG(f, t) (2)

No attempt is made to correct the phase, with the noisy phase
used in the inverse Fourier transform to return the signal to
the time-domain. At higher SNRs, this phase error is not
significant but at lower SNRs, using the noisy phase introduces
perceptible distortion into the enhanced speech [12].

A. Complex masking

To avoid phase distortions, complex masking has been
proposed as an alternative solution that enhances both the
magnitude and phase of noisy speech [13],

X̂(f, t) = Y (f, t)M(f, t) (3)

Two approaches to estimate the complex mask can be con-
sidered, estimating real and imaginary masks, Mr(f, t) =
ℜ{M(f, t)} and Mi(f, t) = ℑ{M(f, t)}, or estimating mag-
nitude and phase masks, |M(f, t)| and θM (f, t). Signals from
the two approaches are illustrated in Figure 1 which first shows
a clean speech spectrogram, taken from male speaker s6 in the
GRID database [20], then contaminated with white noise at an
SNR of 0dB. Figures 1c and 1d show the corresponding ideal
magnitude and phase masks. These illustrate a clear structure
in the magnitude mask, while the phase mask has an almost
random structure, except where the speech energy is high and
consequently the ideal phase mask is close to zero as little
phase compensation is necessary. Figures 1e and 1f show
the ideal real and imaginary masks. The structure in the real
mask is clear and follows closely that of the magnitude mask.
Conversely, the structure is less clear and of lower amplitude
in the imaginary mask. In terms of complex mask estimation,
the unstructured phase mask has led most methods to favour
real and imaginary mask estimation as,

M(f, t) = Mr(f, t) + jMi(f, t) (4)

where the Mr(f, t) and Mi(f, t) are the real and imaginary
masks and j =

√
−1. However, studies have reported diffi-

culties in estimating the imaginary mask due to its lack of
structure and low amplitude in comparison to the real mask
[14]–[16].

B. Impact of underestimating the imaginary mask

The contribution of the real and imaginary masks in en-
hancement can be considered by representing the masking
process of (3) in complex exponential form,

|X̂(f, t)|ejθX̂(f,t) = |Y (f, t)|ejθY (f,t)|M(f, t)|ejθM (f,t)

= |Y (f, t)||M(f, t)|ej(θY (f,t)+θM (f,t))

(5)

where the magnitude and phase of the mask are calculated as,

|M(f, t)| =
√
ℜ{M(f, t)}2 + ℑ{M(f, t)}2 (6)

Fig. 1. Clean and noisy speech spectrograms (panels a) and b)), the resulting
ideal magnitude and phase masks (panels c) and d)), and real and imaginary
masks (panels e) and f)).

and
θM (f, t) = tan−1

(
ℑ{M(f, t)}
ℜ{M(f, t)}

)
(7)

In the situations where the estimated imaginary mask is un-
derestimated and tends toward zero, this causes the magnitude
and phase masks to also be underestimated,

lim
ℑ{M(f,t)}→0

|M(f, t)| = |ℜ{M(f, t)}| (8)

and
lim

ℑ{M(f,t)}→0
θM (f, t) = 0 (9)

When these are considered within (5), the magnitude mask
is underestimated and consequently over-attenuates the noisy
signal. The phase mask has minor effect that results in the esti-
mate of the clean speech spectrum having a phase approaching
that of the noisy speech phase,

|X̂(f, t)|ejθX̂(f,t) = |Y (f, t)||ℜ{M(f, t)}|ejθY (f,t) (10)

This underestimation of the imaginary mask is the primary rea-
son for complex masking methods to perform only marginally
better, or even worse, than conventional magnitude masking.

C. Analysis of the imaginary mask

To investigate why the imaginary mask is underestimated,
the ideal real and imaginary masks in (4) can be expressed
in terms of the real and imaginary clean speech and noisy
spectra, Xr, Xi, Yr and Yi, where, to simplify notation, the f
and t subscripts are not shown,

M =
YrXr + YiXi

Y 2
r + Y 2

i

+ j
YrXi + YiXr

Y 2
r + Y 2

i

(11)

Combining (1) and (11), the real and imaginary masks can be
expressed in terms of clean speech and noise spectra,

Mr =
X2

r +X2
i +DrXr +DiXi

X2
r +D2

r + 2XrDr +X2
i +D2

i + 2XiDi
(12)
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Fig. 2. Mean and range of values within one standard deviation of the mean
for a) real and b) imaginary masks, shown across each frequency bin.

Mi =
XiDr −XrDi

X2
r +D2

r + 2XrDr +X2
i +D2

i + 2XiDi
(13)

where Xr, Xi, Dr and Di are all zero mean signals.
To examine the distribution of mask amplitudes, Figure

2 shows the mean and range of values within one standard
deviation for the real and imaginary masks across each of
the F=160 frequency bins. These are calculated from the
1000 utterances spoken by speaker s6 in the GRID database,
each contaminated with white noise at an SNR of 0dB, and
including both speech and non-speech regions. The mean of
the real mask is all positive and has higher amplitude at lower
frequency bins. This corresponds to generally higher levels of
speech energy being present and consequently higher local
SNR that requires less mask attenuation (i.e. higher mask
amplitudes). Conversely, the mean of the imaginary mask is
very close to zero across all frequency bins, irrespective of
the speech energy. In terms of standard deviation, the real and
imaginary masks have similar values which are higher at lower
frequencies that have greater speech energy. These different
distributions are seen clearly in the example shown in Figure
1e and 1f and show more clear structure to be present in the
real mask than in the imaginary mask.

III. MASK ESTIMATION

This section presents the combined CNN-DNN architecture
to estimate a complex mask from input noisy spectral features
and in particular introduces the proposed loss function to
improve imaginary mask estimation.

A. Feature extraction

Masking methods have traditionally relied on hand-crafted
input features, such as cochleagrams, mel-filterbanks, MFCCs
and complementary sets of these ( [14], [21], [22]). Recent
research has demonstrated that deep-learning based features
outperform these classic features, as models have the power
to learn more discriminative representations of the signals,
hence this method has been adopted [14], [23]. First, log-
power spectral features are extracted from the input signal
using a window length of 20ms and a 50% overlap. Initial
experiments found that more accurate masks were estimated
from log power spectral features as opposed to using real and
imaginary spectra, which we attribute to the log compression
that cannot be applied to the negative values of the complex
components. To capture temporal information, a set of spectral

Fig. 3. Proposed complex mask architecture that takes as input a set of stacked
log-power spectral vectors, applies CNN feature extraction followed by four
feedforward layers to output estimates of the real and imaginary masks.

features are stacked into mini-spectrograms. From preliminary
tests, a stack of 47 frames was found to give highest PESQ
scores, and corresponds to a mini-spectrogram 480ms wide.
This is input into a 5-layer CNN, shown in Figure 3, which
learns relevant features from the input mini-spectrograms and
comprises five two-dimensional convolutional layers with the
first two both followed by max-pooling layers. The first layer
comprises 16 2×2 filters, which is increased to 16 3×3 filters
in the second layer, with the remaining layers each having 64
2× 2 filters.

B. Target mask pre-processing

The training target for the proposed model is the complex
ideal ratio mask (CIRM). While the range of values in the
real and imaginary mask components extend to [−∞;∞],
the majority of amplitudes are concentrated near zero, as
evidenced in Figure 2. To avoid optimisation problems caused
by some of the large values present in the masks, the real and
imaginary components are truncated to the [−5; 5] range. After
evaluating various methods (e.g. [13]), a sigmoid function was
determined to be the most effective approach for compressing
the mask values. After prediction, the real and imaginary
amplitudes are expanded back to the truncated range using
the inverse sigmoid function, such that,

CIRMz =
1

1 + e−Mz
, M̂z = loge

(
ĈIRMz

1− ĈIRMz

)
(14)

where Mz and CIRMz are the original and compressed target
masks, ĈIRMz and M̂z are the estimated and expanded mask
amplitudes and z ∈ {r, i} denotes the real or imaginary mask.
The truncation applied before compression is non-invertible,
and it restricts a small subset of mask amplitudes, though not
using it limits the model’s ability to learn mask patterns.

C. Model architecture

The overall model architecture maps each 480ms mini-
spectrogram into an estimate of the complex mask vector
using the two-stage CNN-DNN model shown in Figure 3. The
first stage uses a CNN for feature extraction as explained in
Section III-A. The output of the CNN is flattened and input
into the second stage which comprises three fully-connected
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layers, containing 1024, 512 and 256 nodes respectively, all
preceded by a batch normalisation layer followed by a 0.2
rate dropout. A fourth layer outputs a vector that contains the
real and imaginary mask estimates, ĈIRMr and ĈIRM i,
and these correspond in time to the central vector in the
mini-spectrogram input. Rectified linear units (ReLU) are used
throughout the model [24], with the exception of the output
layer which uses a sigmoid activation (14).

D. Loss function

The mean squared error (MSE) is the conventional metric
used within loss functions for training neural networks and
has been used within complex mask estimation methods. This
applies an equal weighting across all components of the real
and imaginary masks. To address the issue of underestimation
of the imaginary mask, a weighted loss function is proposed
that aims to direct model training towards the imaginary
mask. This is achieved by separating the mask error into
individual real and imaginary components, where a tunable
weight, αIMAG, can be applied to the imaginary error to
increase its contribution within the loss function. Further, as
ultimately better phase correction by the mask is desired, a
third term is introduced into the loss function that is the phase
error of the mask and this is also given its own adjustable
weight parameter, αPH. The proposed loss function, Lw, is
calculated as,

Lw =
1

2N

N∑
t=1

[( F∑
f=1

(ℜ{CIRM(f, t)} − ℜ{ĈIRM(f, t)})2
)

+αIMAG
( F∑

f=1

(ℑ{CIRM(f, t)} − ℑ{ĈIRM(f, t)})2
)

+αPH
( F∑

f=1

∣∣∣θCIRM (f, t)− θ
ĈIRM

(f, t)
∣∣∣)]

(15)
where CIRM(f, t) and ĈIRM(f, t) are the ideal (target)
and estimated masks that follow truncation and compression
in (14). The summation is made over the N mask vectors used
in training, and F = 160 is the number of frequency bins. The
factor of 2 in the denominator is used to normalize the MSE
by the number of output dimensions. The error from the real
mask is implicitly one, as this was found best for preserving
magnitude, while the imaginary and phase component weights,
αIMAG and αPH, can be adjusted to increase or decrease their
contribution to the overall error.

IV. EXPERIMENTAL RESULTS

The aim of the experiments is to examine the effectiveness
of the proposed loss function and the contribution made by
the imaginary and phase components in terms of improving
speech quality and intelligibility.

A. Dataset and evaluation metrics

The dataset used comprises two female and two male
speakers taken from the GRID corpus [20]. The dataset

Fig. 4. Effect of varying αIMAG and αPH in terms of PESQ scores at SNRs
of a) 0dB and b) -10dB.

Fig. 5. Effect of varying αIMAG and αPH in terms of ESTOI scores at
SNRs of a) 0dB and b) -10dB.

contains a total of 4000 utterances which has been partitioned
using a 70:30 ratio for training/validation and testing, with all
speakers used for training and testing, but with the respective
sets extracted randomly with no overlap. The contaminating
noise is taken from the DEMAND dataset [25] and uses the
‘Public’ and ‘Street’ noises with no samples shared across the
training, validation and test sets. Evaluation of the quality of
the enhanced speech is made objectively using PESQ while
intelligibility is measured using ESTOI [26], [27]. Two SNRs
are used for evaluation, 0dB and -10dB, chosen specifically
as with these high noise conditions the effect of phase error
is perceptible.

B. Quality and intelligibility

To investigate the effect that the proposed loss function
has on the enhanced speech signal, quality and intelligibility
are measured for different combinations of the imaginary
and phase weights in (15). Figures 4a and 4b show PESQ
scores at SNRs of 0dB and -10dB for 0.5 ≤ αIMAG ≤
2.5 and 0 ≤ αPH ≤ 1. With no enhancement applied, the
PESQ scores for the noisy speech at 0dB are 1.74 and at -10
dB are 1.04. Applying enhancement using the proposed loss
function, at 0dB the highest PESQ score of 2.36 is attained
with no contribution from the phase mask error, i.e. αPH=0,
although at -10dB including a small contribution (αPH=0.1)
improves scores. The effect of increasing the contribution of
the imaginary mask error is more beneficial, with increased
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scores that peak at αIMAG=1.25 at 0dB and αIMAG=1.5 at -
10dB. These are both higher than the conventional magnitude
ratio masking (MRM) scores that are shown in the figure.

ESTOI scores are shown in Figures 5a and 5b for SNRs
of 0dB and -10dB for the same combinations of αIMAG and
αPH values. With no enhancement applied, the ESTOI scores
for the noisy speech are 0.378 and 0.110 at 0dB and -10dB
respectively. Altering the imaginary and phase error weights
shows a largely similar trend of scores as observed for PESQ,
with best scores of 0.598 at 0dB and 0.264 at -10dB, although
phase error weights of both αPH=0 and αPH=0.1 have almost
identical performance. Compared to magnitude ratio masking,
the proposed loss function gives increased ESTOI scores.

The results show that an increase in loss function weight for
the imaginary mask error improves both PESQ and ESTOI,
while emphasising the phase mask error has less effect and
if set too large is detrimental. This shows that prioritising
imaginary mask error in model training leads directly to
complex masks better able to enhance the noisy speech.
Conversely, giving more weight to the phase error reduces the
relative contribution of the real and imaginary components,
leading to degraded speech enhancement.

V. CONCLUSION

In this study, an assessment of the theory behind complex
masking has been made, showing why the imaginary mask is
predisposed to underestimation during model training and how
this affects the associated magnitude and phase of the complex
mask. A parameterised loss function has been evaluated across
a range of values to measure the effect of the imaginary and
phase components during learning. Evaluation done on the
GRID dataset indicates that assigning more weight to the
imaginary component directs the model towards producing
better masks. This is evident in the enhanced speech quality
and intelligibility, which improved at both 0dB and -10dB.
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