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Abstract—Vocal detection (VD) algorithms aim to detect the
presence of vocals in music recordings and are an essential pre-
processing step for other tasks, including singer identification and
lyrics transcription. However, the lack of large-scale annotated
datasets has slowed down research in the field, in particular w.r.t.
the application of modern deep learning methods. This paper
introduces DAACI-VoDAn, a novel dataset for VD that contains
706 full-length music tracks and vocal segment annotations. In
addition, we propose a new method for the task that outperforms
state of the art methods on DAACI-VoDAn as well as on an
existing VD dataset. Our approach combines a convolutional
head, that is pre-trained on large amounts of weakly-labeled
data, with a temporal-convolutional architecture which models
the occurrence of two-dimensional patterns over time.

I. INTRODUCTION

Singing voice detection or simply vocal detection (VD),
is a classification task that aims at detecting segments of a
music track that contain singing voice. In the field of Music
Information Retrieval (MIR), VD is frequently approached at
frame-level granularity, i. e. , a system predicts the presence or
absence of vocals in short successive audio frames. The frame
length varies depending on the method and ranges from a few
milliseconds (i. e. , 5 ms) to 100 ms for coarser predictions.
Detecting the presence of vocals in a music track can be an
important pre-processing step for other MIR tasks such as lyrics
transcription [1], singer identification [2] and singing voice tran-
scription [3], to name but a few. Song-level tags related to the
presence of vocals are furthermore commonly used in interfaces
for the exploration of production music catalogues and frame-
level annotations can be part of music track visualisation tools.

Early VD approaches used standard classifiers like Support
Vector Machines (SVM), Random Forests (RF) and Hidden
Markov Models (HMM) that operate on hand-crafted low-
level descriptors [4] or features derived from neural networks
trained on natural speech [5]. For a detailed review of systems
that follow this approach, the reader is refered to [6]. In an
effort to overcome the limited availability of data, the work
in [7] used dictionary learning to detect vocal segments in
folk music in an unsupervised manner.

More recent methods have relied on Deep Learning (DL)
architectures and in particular on Convolutional Neural
Networks (CNN) and temporal architectures, such as Recurrent
Neural Networks (RNN) and Long Short-Term Memory
networks (LSTM). While CNNs are a powerful tool for learning

two-dimensional patterns (i. e. , in spectrograms), the motivation
to employ recurrent architectures is based on their capability of
modelling the temporal evolution of a music signal (temporal
context) rather than evaluating short frames in isolation.

In [8], an LSTM was shown to outperform RFs when
operating on hand-crafted features, and the work in [9] obtained
similar results when employing a bi-directional LSTM on mel-
spectrograms after a harmonic-percussive source separation
(HPSS) pre-processing stage. Similarly, [10] and [11] used long-
term recurrent convolutional networks (LRCN) with source
separation as a pre-processing stage and hand-crafted audio fea-
tures as input to train genre-specific methods. The work in [12]
obtained slightly better results using a CNN architecture on mel-
spectrograms and concluded that pitch shifting as a data aug-
mentation method yields a small performance improvement. In
an extension to their work, the same authors proposed a regulari-
sation mechanism to early layers in their network to compensate
for the loudness-dependency of their CNN-based system [13].
The architectures presented in [12] and [9] were later explored
within a knowledge distillation framework via a teacher-student
paradigm [14]. Another recent deep learning approach is a joint
method for singing melody detection and extraction based on
a Convolutional RNN (CRNN) [15]. A comparative study [16]
involving several network architectures and input representa-
tions showed that, due to the lack of large data volumes, data-
demanding end-to-end architectures (that take raw samples as
input) are outperformed by spectrogram-based methods.

Despite the paradigm shift towards the use of DL for most
MIR tasks, there have been relatively few DL methods for the
VD task. A possible explanation is the lack of large volumes
of representative, high quality data. The Jamendo corpus [17],
which is widely used in the context of VD, only contains 93
tracks (443 minutes of audio in total). In addition to the pro-
vided recordings, which were collected from the Creative Com-
mons music platform Jamendo1, the corpus contains segment-
based labels and pre-computed data splits. The segments
were annotated by a single annotator without a documented
annotation strategy. DALI [18] contains 5358 tracks with time-
aligned vocal melody notes and lyrics (sourced from karaoke
platforms). The alignment is done automatically following a
teacher-student paradigm to iteratively refine the results.

1https://www.jamendo.com
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In addition to Jamendo and DALI, some other music datasets
that have been extended, adapted, or re-purposed to be used in
the context of VD. These include MedleyDB [19], for which
frame-level vocal annotations can been derived from instrument
activations [20], [21], or MIR-1K [22] and iKala [23], two
collections of Chinese pop music originally developed for vocal
separation where vocal segments can be inferred from funda-
mental frequency (F0) annotations. The RWC Pop dataset [24],
which at the time of writing this paper was unavailable, contains
100 pop music tracks, for which singing voice annotations
were provided in [25]. Furthermore, the work in [16] created
a dataset of binary labels by randomly sampling a set of
tracks from the FMA dataset [26] and manually annotating the
presence or absence of vocals for 2-sec excerpts. This dataset
contains slightly over 16000 excerpts that are split into training
(75%) and testing (25%) data partitions.2 In an effort to provide
vocal segment annotations on a larger scale, the authors in
[6] annotate a corpus of music tracks from various sources
(including Jamendo, the RWC Pop dataset and YouTube).
However, the dataset is not available at the time of writing.

Overall, available data for the VD task is rather limited in
volume and diversity. Despite its small size and an experiment
in [16] that revealed its limited generalisation capabilities to
other music styles, the Jamendo corpus remains the default
dataset for benchmarking VD systems.

The contributions of this paper are three-fold. First, we
release DAACI-VoDAn (Vocal Detection ANnotations), a
new annotated dataset for VD that contains 706 songs of
diverse genres, artists, and cultures, together with manually
created vocal segment annotations that follow a well-defined
annotation strategy. With this dataset, we attempt to alleviate
the problem of data scarcity for vocal detection and hope it
will foster further research on the topic. Second, we benchmark
two existing DL-based VD systems on DAACI-VoDAn and
compare to their performance on the Jamendo corpus. Third,
we propose a novel VD method that outperforms the state of the
art on both on datasets. Our approach combines a convolutional
head, pre-trained on large amounts of weakly-labeled data,
to model relevant 2D spectral patterns, with a Temporal-
Convolutional layer (TCN) to model their evolution of time.

II. DAACI-VODAN DATASET

The dataset consists of 706 music tracks which were selected
to cover a broad variety w.r.t. genre, era, and instrumentation,
and are intended to be representative of the music universe
available through commercial catalogues and streaming
services. We provide segment-level vocal annotations for
each track in the dataset, which have been created manually
according to a well-defined annotation strategy described in
more detail in Section II-A.

DAACI-VoDAn is based on full-length tracks with an
average song duration of 234 seconds (ca. 3.8minutes),
covering 448 unique artists. The total amount of audio is

2For the sake of comparison, when all Jamendo tracks are split into non-
overlapping 2-sec segments, a dataset of roughly 19000 excerpts is created.

45 hours and 53minutes, which represents more than six times
the size of the Jamendo corpus. Overall, vocals are present
in roughly 70% of audio frames. 25 out of the 706 tracks are
purely instrumental and do not contain any vocals.

All data is available for research purposes under a non-
commercial use license.3 While copyright issues prevent us
from sharing the audio files directly, we provide a metadata file
which, in addition to artist and song title, links each song via a
unique ID to a YouTube URL. Even though providing YouTube
URLs has a few shortcomings, it is common practice since it en-
ables the release of other valuable data, i. e. , vocal annotations.

A. Annotation methodology

The annotations were created manually by a team of four
annotators using Sonic Visualiser [27] and professional-grade
headphones. All annotators have formal music education and
ample experience in annotating music for research purposes.
The annotation effort was conducted in a peer-reviewing
system where each annotation was created by one annotator
and reviewed by another. The tracks were evenly distributed
among the four annotators.

While the task of annotating vocal segments might appear
straightforward at first glance, there can be numerous ambigu-
ous scenarios. To provide consistent and extendable annotations,
we defined an annotation strategy in the form of a set of rules:

1) We defined a minimum inter-region distance of 200ms.
Two vocal regions which are at least 200ms apart are
annotated as separate regions. Shorter vocal rests are not
considered and a single long region is annotated instead.

2) We annotated heavily processed (e. g. , chorus or distortion
effects) singing voice sections as vocals, as long as they
are still recognizable as originating from a human voice.

3) We extended vocal sections to include reverb and delay
“tails” as long as they are audible. Similarly, we considered
inhalations or “breathing” sounds, e. g. , at the beginning
of a vocal phrase, as part of vocal section.

4) We considered segments containing speech as vocal sec-
tions but excluded whistling. Vocal ensembles and back-
ground vocals are also labelled as vocals.

While the Jamendo dataset does not disclose any annotation
strategy, an in-depth inspection showed that annotated vocal
segments appear to only cover clear and unprocessed vocals
and do not seem to include reverb tails or inhalations.
Consequently, detecting vocals in DAACI-VoDAn can be
considered a more challenging and granular task.

B. Data splits

In order to enable a direct comparison among methods, we
provide pre-computed training (80%, 565 tracks), validation
(10%, 71 tracks) and test (10%, 70 tracks) splits for the dataset.
Since our collection contains multiple songs by the same artist,
the splits do not overlap w.r.t. artist (all songs by the same artist
belong to the same partition) in order to ensure a fair evaluation
strategy and exclude any influence of the so-called album effect.

3https://zenodo.org/record/7991496

137



Moreover, the dataset contains a few songs performed by two
artists. In these cases, if both artists have at least one other song
in the dataset separately, we ensure all tracks by both artists,
as well as the joint track, are assigned to the same partition.

III. EXPERIMENTAL SETUP

A. Comparative evaluation
We conduct a set of experiments to evaluate the performances

of existing methods and the novel approach on both DAACI-
VoDAn and Jamendo. More specifically, we select two existing
deep learning-based systems: the CNN from [12] (SCH-CNN)
and the RNN from [9] (LEG-RNN). Then, we propose a novel
architecture for the task: a convolutional TCN (CNN-TCN-TL)
which is described in detail in the next sections.

B. Baseline systems
While there do exist a few other more recent systems that

achieved similar results (e. g. , [10], [11]), we select SCH-CNN
and LEG-RNN as a reference, since, given their performance,
they are still considered state of the art [20]. Furthermore, they
use the same input representation (mel-spectrograms) as our
proposed method, which enables a direct comparison. For both
methods we follow the most recent version of the network
architecture and the feature extraction stages, described in
[20] and available online4. Based on the experiments reported
in [13], we modify the original CNN from [12] and add zero-
mean convolutional filters in the first layer of the network. For
the LEG-RNN, we implement the best-performing network
with three hidden layers of size 30, 20, and 40, respectively.

C. Proposed method
We propose a network with a convolutional front-end

followed by a temporal convolutional (TC) layer [28]. The
motivation behind this design is that the front-end is capable
of learning 2D patterns in the input space and the TC layer can
model the occurrence of these patterns over time. TC layers
make use of dilated convolutions to increase the receptive
field, enabling long temporal relationships to be captured
efficiently. We refer to this architecture as CNN-TCN-TL.

Pre-processing. Similar to [10] and [11], we first run the
source separation system Spleeter [29] on the music tracks as a
pre-processing step to isolate the vocal component. Future work
will explore the more recent approach Demucs [30]. Note that
the baseline system in LEG-RNN follows a similar approach
by employing HPSS as a pre-processing stage. After discarding
the accompaniment, we compute the mel-spectrogram of the
vocal track. All audio tracks are resampled to 44 100 Hz before
computing the mel-spectrograms using librosa [31] with a hop
size of 5.8 ms, and 64 mel bands. Note that our feature extrac-
tion parameters differ from those in SCH-CNN and LEG-RNN.

Network architecture. The proposed network, depicted
in Figure 1, takes mel-spectrogram patches of size 344× 64
as input, which covers roughly 2-sec of audio across 64 Mel
bands. The front-end CNN has four layers with 16 (3 × 3)5,

4https://github.com/kyungyunlee/ismir2018-revisiting-svd
5The number of filters is written first (16) and their shape follows in

parentheses (3× 3).

32 (3 × 3), 32 (3 × 3), 32 (3 × 3), respectively, followed by
ReLU activation and batch normalisation. After the second,
third, and fourth convolutional layers, the frequency dimension
is halved by using max-pooling layers. This convolutional
head is followed by a fully-connected layer with 32 neurons
and its output passes through a TC layer with 16 (3 × 3)
filters and seven dilation levels exponentially increasing from
1 to 64. The output of the network is a dense layer with one
neuron of sigmoid activation, wrapped into a time distributed
layer to produce one prediction per input time frame.

Pre-training on weak labels. An advantage of this two-
stage architecture is that the front-end can be pre-trained
separately to enable transfer learning (TL). To this end, we
use weakly-labeled data to pre-train the convolutional head of
CNN-TCN-TL on global labels referring to larger segments.
We then train its temporal component only on DAACI-VoDAn.
Weak labels can be obtained automatically in large volumes and,
despite their noisy nature, can increase the effective size of the
training dataset for tasks where manual annotations are sparse
and costly. Similar strategies have recently been successfully
employed in several machine learning disciplines [32], [33],
including the related task of audio event detection [34], [35].
Weakly-labeled data was also used in [36] with saliency maps
to locate vocals in a music track with higher granularity.

Here, we obtain weak labels via track-level tags related to
the presence of vocals. We use the LastFM API6 to collect
8 583 tracks which contain the tag “instrumental”, and 8 807
tracks with at least one tag of either “vocals”, “male vocals”,
or “female vocals”. We extract 60-sec from the middle of
the song and, while we cannot ensure that vocals will be
present within this segment and some noise will inevitably
be introduced, we assign a global label to the excerpt based
on the corresponding song-level tag.

With this dataset, we train CNN-TCN-Pool, a network that
has the same convolutional head as CNN-TCN-TL but instead
of a TCN layer, it applies a combination of global pooling
operations (max- and average- pooling) to the CNN outputs,
to summarise their content along the time dimension. After
training, we freeze the weights of the convolutional head from
CNN-TCN-Pool and use it as a front-end in CNN-TCN-TL.
In this way, only the TC component is trained on the smaller
target dataset.

Training setup. After the pre-training stage, we train
CNN-TCN-TL for 100 epochs using the Adam optimizer [37]
with an initial learning rate of 10−4. We additionally
implement an early stopping mechanism with a patience of
10 epochs also based on the validation loss. To account for
class imbalance in the dataset, we employ class weights when
training on DAACI-VoDAn.

Post-processing. All networks go through the same post-
processing stage to produce the final binary predictions.
Specifically, we first apply a median filter of fixed length
(390 ms) to the raw outputs of the networks to smooth the
predictions along time. The filter length was chosen based

6https://www.last.fm
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Fig. 1. CNN-TCN-TL architecture diagram. Mxp and BN refer to max-pooling operations and batch normalisation, respectively. Feature map dimensions
are indicated above, and filter shapes for each convolutional layer are shown in parentheses under each layer name. Rsh is a reshape layer, Dil. stands for
“dilation”, and TCN is the temporal convolutional layer. The dotted rectangle indicates a time distributed layer, which has one unit with sigmoid activation.

TABLE I
COMPARATIVE EVALUATION RESULTS. SUFFIXES -J (JAMENDO) AND -D

(DAACI-VODAN) INDICATE THE DATASET USED FOR TRAINING AND
EVALUATION. F1-Score, Precision, Recall REFER TO THE POSITIVE (VOCALS)

CLASS. THE BEST RESULTS FOR EACH DATASET ARE HIGHLIGHTED.

Model Accuracy (%) F1-Score (%) Precision (%) Recall (%)

SCH-CNN-J 86.68 86.72 86.00 87.45
LEG-RNN-J 84.74 87.07 84.48 89.82
CNN-TCN-TL-J 93.35 93.45 91.59 95.38

SCH-CNN-D 85.87 90.28 85.94 94.02
LEG-RNN-D 86.94 90.72 89.10 92.11
CNN-TCN-TL-D 90.16 92.93 92.22 93.67

on the inter-region interval defined by the vocal annotation
strategy. Then, a classification threshold is applied to binarise
the predictions. This threshold is optimised independently for
each model on the validation set.

IV. RESULTS

A. Comparative evaluation

Table I summarises the results comparing the different
methods with respect to accuracy, precision, recall, and F1-
Score, considering the presence of vocals as the positive class.
All metrics are calculated by aggregating all frames in the test
set (as opposed to track-based averaging).

Analysing the results obtained on the Jamendo corpus, we
observe that, despite the limited amount of data, the proposed
method outperforms the two baselines for all metrics, reducing
the false positives and negatives by a large margin. Similarly,
focusing on DAACI-VoDAn (lower part of Table I), we observe
that CNN-TCN-TL yields the best results across metrics.

When comparing the performance of CNN-TCN-TL on
both datasets, we observe a performance drop from Jamendo
to DAACI-VoDAn. However, SCH-CNN and LEG-RNN
experience the opposite. This behaviour can be explained by
the complexity of the annotations and the effect of the source
separation step. We mentioned above that DAACI-VoDAn
annotations capture a set of subtleties that are more challenging
to recognise. An inspection of the predictions revealed that the
two baselines do not capture them. Hence, they benefit from
the increased amount of data but have a poorer performance
when compared to CNN-TCN-TL. On the other hand, the

TABLE II
ABLATION STUDY RESULTS ON DAACI-VODAN.

Model Accuracy (%) F1-Score (%)

CNN-TCN-Mix 87.89 91.33
CNN-TCN 89.88 92.69
CNN-TCN-TL 90.16 92.93

predictions from the proposed model capture part of these more
granular information, showing that the system is better suited
for the task than the baselines. However, more data examples
covering these more ambiguous cases are necessary for the
model to learn to distinguish them correctly. Moreover, an
investigation of the Spleeter outputs showed that it eliminates
part of these effects, e. g. , breaths before a sung phrase.
Hence, in some cases, the model is unable to recognise them
because they are not present in the signal after pre-processing.

B. Ablation study

We conduct an ablation study to assess the effect of
(a) source separation as a pre-processing step, and (b) the
transfer learning from weak labels. To this end, we evaluate
the performance of two variants of the proposed method
on DAACI-VoDAn. CNN-TCN does not leverage TL and is
trained on DAACI-VoDAn end-to-end instead. CNN-TCN-Mix
furthermore skips the source separation step and is trained end-
to-end on the original signal. Table II summarises the ablation
study results. We observe that each step towards the proposed
method improves the performance: CNN-TCN-Mix yields
better results (cf. Table I) than SCH-CNN, which also operates
on the mixture, but with a significantly smaller network
(1.4M parameters for SCH-CNN vs. 51k parameters for
CNN-TCN-Mix). Moreover, we find that source separation as a
pre-processing stage (CNN-TCN) contributes to a performance
improvement (from 87 to 89% accuracy), compared to
CNN-TCN-Mix. Finally, when we leverage TL on weakly-
labeled data (CNN-TCN-TL), we further improve the model’s
performance, showing that the integration of these steps into our
proposed method yields the best results in the studied scenarios.

V. CONCLUSIONS

In this paper, we introduced DAACI-VoDAn, a novel
dataset for vocal detection that contains 706 full-length music
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tracks and manually-annotated vocal segments. We proposed
a new deep learning-based method for VD (CNN-TCN-TL)
that uses source separation as a pre-processing stage and
combines a convolutional head, pre-trained on weakly-labeled
data, with a temporal-convolutional architecture. We evaluated
CNN-TCN-TL and two baseline systems on the new dataset
and on the Jamendo corpus and found that the proposed
method outperformed the baselines in all studied scenarios.
Furthermore, an ablation study showed that both source
separation and pre-training on large amounts of weakly-labeled
data boost the performance of the model. However, we found
that the source separation step eliminates some parts of the
signal that the model requires to recognise the subtleties present
in DAACI-VoDAn. In this direction, future work will explore
a double-branch architecture that combines pre-processed and
raw inputs to account for potential mistakes in the separation.
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