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Abstract—Automatic chord recognition is a fundamental and
important task in music information processing. FifthNet is a
recently proposed chord recognition framework based on a deep
neural network (DNN). Its aim is to reduce the computational
and memory loads by taking advantage of knowledge on music
signals. Since FifthNet achieved the state-of-the-art performance
and requires less computational resource compared to the other
DNN-based methods, it seems suitable for real-time applications.
However, the original FifthNet cannot be directly used in real-
time because it applies the spectral reassignment method in its
feature extractor. The reassignment method requires some look-
ahead frames that results in unavoidable latency. In this paper, we
propose to replace the reassignment method of FifthNet with the
synchrosqueezing transform to reduce the amount of required
look-ahead frames and the computational requirement. QOur
modification makes FifthNet on-line and removes the obstacle
towards real-time execution. In addition, the experimental result
shows that the accuracy of chord recognition can be improved
by the proposed modification.

Index Terms—Automatic chord recognition, deep neural net-
work (DNN), sparse time-frequency representation, spectral re-
assignment, synchrosqueezing transform.

I. INTRODUCTION

Chord is one of the most fundamental components of
music, and thus automatic recognition of chord is an impor-
tant task in music information processing. Automatic chord
recognition has been realized by applying machine-learning-
based classifiers on some acoustic features extracted from
music signals [1]-[19]. Classical acoustic features were de-
rived from the short-time Fourier transform (STFT) due to
its popularity in acoustic signal processing. However, STFT
treats the frequency axis linearly, which does not match
with the structure of music signals. Therefore, the constant-
Q transform (CQT) is usually applied to handle the frequency
axis logarithmically [20] because musical notes have the base-
2 logarithmic relationship. Typically, spectral features obtained
by CQT are further processed to construct chroma features
which compactly represent the energy components related to
chord [6]-[14]. Calculated spectral or chroma features are
inputted to a classifier to estimate the underlying chord, where
recently proposed methods often use a deep neural network
(DNN) for the classifier [1]-[14].

FifthNet is a recently proposed DNN-based chord recogni-
tion framework [14]. It consists of an input feature extractor
and a structured DNN, where both of them are specifically
designed for automatic chord recognition. By considering the
general structure of music signals, FifthNet achieved the state-
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of-the-art performance while reducing the number of param-
eters [14]. Such a small and lightweight DNN can broaden
the application of DNN-based chord recognition thanks to
the lower computational and memory loads. For example, a
sufficiently small DNN can be applied to recognize chord in
real-time using a mobile device. Therefore, reducing the com-
putational and memory loads of DNN-based chord recognition
systems, while maintaining the recognition accuracy, is one
important direction of research.

However, even though the computational and memory loads
of FifthNet are small compared to those of the other DNN-
based methods, it cannot be directly used in real-time appli-
cations. This is because the feature extractor of FifthNet uses
the spectral reassignment method [25] that modifies spectral
components not only in the frequency direction but also in
the time direction. The reassignment method provides sparse
time-frequency representation that is known to be effective
for automatic chord recognition [12]-[15]. Since it reassigns
the positions of time-frequency bins in both time and fre-
quency directions, the feature extractor of FifthNet requires
information from both past and future when recognizing chord
at the current frame. This property naturally requires some
look-ahead frames that would result in undesirable latency
on a real-time chord recognition system based on FifthNet.
It is desirable for a real-time system to minimize its latency,
and therefore reconsidering the feature extractor of FifthNet
is necessary for some of its potential applications.

In this paper, we propose to replace the spectral reassign-
ment used in FifthNet with the synchrosqueezing transform to
make FifthNet on-line (i.e., allowing step-by-step sequential
execution). The synchrosqueezing transform is a variant of
the reassignment method [21], where the positions of time-
frequency bins are preserved in the time direction. That is,
our modification removes the requirement on the look-ahead
frames of FifthNet, while maintaining the positive effect of
the reassignment method, and reduces the computational and
memory loads. In addition, it will be shown in our experiment
that the proposed modification of FifthNet can perform similar
or better than the original FifthNet. Therefore, our contribu-
tions on FifthNet in this paper are three-folds: (1) removing
the requirement on the look-ahead frames, (2) reducing the
computational and memory loads, and (3) improving the chord
recognition accuracy. Although we have not implemented a
real-time application, our proposal provides one important and
unavoidable step toward real-time execution of FifthNet.
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Fig. 1. Example of D5 unit and input feature of FifthNet. An example of
the D5 unit for note C at single time frame is shown on the left, and an
illustration of the input feature tensor obtained by concatenating D5 units for
all time frames and pitch classes is shown on the right.

II. FIFTHNET AND SPECTRAL REASSIGNMENT

FifthNet is a chord recognition framework consisted of
small DNNs and the specially designed input feature extractor.
By incorporating knowledge on the structure of music signals,
FifthNet can reduce the computational and memory loads
while achieving the state-of-the-art accuracy. Since this paper
focuses on the input feature, details related to DNNs are left
in the reference. Please see the original paper [14] for the
whole details of FifthNet. Also, see Section IV for the network
architecture adopted in this paper.

A. Input Feature of FifthNet

The DNNs introduced in the original paper of FifthNet [14]
are not special but just a simple combinations of ordinary
layers (e.g., convolutional layers, average pooling layers, batch
normalization layers, dropout, etc.). The most important aspect
that makes FifthNet distinct from the other models is the spe-
cially designed input feature obtained through the subfeatures
called D5 (fifth data) units.

The D5 unit for each note (and for each time frame)
represents the CQT spectral coefficients! corresponding to
that note, its octaves, and its fifth notes, where the minimum
and maximum of the considered notes are A0 and Gif7,
respectively. An example for note C is shown on the left
side of Fig. 1. Such D5 units for all time frames around the
target frame and for all 12 pitch classes are concatenated to
construct an input feature tensor for the target frame, as shown
on the right side of Fig. 1. This feature is inputted to a DNN
that processes and summarizes all the frames, followed by
another DNN that provide the recognition result. Once D5
units are calculated from an audio signal, construction of the
input feature is straightforward as explained in [14]. In this
paper, we focus on the process before that: computation of
the pitch feature using CQT with the spectral reassignment.

'Note that this is not the total amount of the corresponding component
because non-sinusoidal components are discarded based on Eq. (7) before
computing the pitch feature and the corresponding DS unit.
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Fig. 2. Tllustration of reassignment applied to linear chirp signal. Each bin
of the usual spectrogram (left) is moved according to reassignment vectors
(center) and placed at the center of gravity of the signal component (right).

B. Spectral Reassignment and Feature Cleaning

FifthNet uses the reassigned CQT [13] for calculating the
pitch feature. It is a combination of the spectral reassignment
and ordinary CQT, and therefore the reassignment method is
explained in this subsection.

The reassignment method [24], [25] is a non-linear post-
processing applied to spectrogram? for obtaining sparse time-
frequency representation. Fig. 2 gives an illustration of the
reassignment method. The usual spectrogram in the left figure
is reassigned to obtain sparse time-frequency representation in
the right figure using the reassignment vectors in the middle
figure. The reassignment vectors are calculated using partial
derivatives of phase of the spectrogram as follows.

Let STFT of a signal = with a window w be defined as

Xo(w,t) = / z(r)w(t —t) e @D dr, (1)
R

where i is the imaginary unit. The polar coordinate repre-
sentation of a complex number X,, = Ae!? provides the
amplitude A(w, ) > 0 and phase ¢(w,t) € [0,27) of an STFT
coefficient X,,(w,t) € C. Then, the reassignment method
moves X,,(w,t) to the new position (wWnew, tnew) given by

Wnew (W, t) = %(w,t), thew (W, t) =t — g—j(w,t), (2)
which can perfectly localize sinusoid, Dirac delta, and linear
chirp signals. Since the partial derivatives of phase can be
computed using two specific windows wp(t) = (dw/dt)(t)
and wr(t) = tw(t), Eq. (2) can be rewritten as®

o Xup(w, t)

Whew (W, t) = w —Im |:Xw @.0) } , 5)
_ Xur(w,t)

tncw(wvt) =1+ Re|: Xw(w,t) :|7 (6)

2Note that the reassignment method can be applied to some general time-
frequency representation other than spectrogram [25], [26].

3This representation may seem different from the equations in other papers
[13], but such difference is due to the definition of STFT. For example,

0Xw dw
Sy == [ o Flir -

t) e iw(T=t) qr

dt
+ iw/ z(r)w(r —t)e T dr 3)
R
== Xup (w, ) +iwXe(w, 1) @

and (1/Xw)(0X/0t) = (1/A)(0A/0t) +i(0¢/0t) = —(Xwp/Xw)+iw
gives Eq. (5) for the STFT defined as in Eq. (1).
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Fig. 3. Example of pitch features with (right) and without (left) reassignment.
Note that these are excerpts, and only an octave is shown for visbility.

where Re[-] and Im[-] represent the real and imaginary parts,
respectively. By computing STFTSs using three windows w, wp
and wr, the spectral component smeared by the uncertainty
principle can be placed back to the original time-frequency
position before the smearing.

In addition to the reassignment, FifthNet applies cleaning
of the feature by removing non-sinusoidal components. This
feature cleaning is based on the following relationship:

0? 0 (if signal is sinusoid
99 (1) = (if signal is sinusoid) = )
Owot 1 (if signal is Dirac delta)
where the mixed partial derivative can be calculated as*
9% (0.1) = Re Xuwpp(@,t)  Xug(w, t) Xup(w, ) L1
Owot Xu(w,t) Xp(w,t) Xyp(w,t)

using the window wrp(t) = t (dw/dt)(t). Based on Eq. (7),
FifthNet discards non-sinusoidal components determined by
the condition |(9%¢/0wdt)(w,t)| > A, where  is a threshold
and was set to A = 0.4 [13].

After applying the reassignment and cleaning, CQT is
computed by dividing the frequency axis with equal bins per
octave and aggregating the reassigned spectrogram according
to the time-frequency positions given by Eqs. (5) and (6)
[13]. The use of the reassigned CQT is able to improve the
chord recognition performance as shown in [13]. This can be
expected by comparing pitch features with and without the
reassignment method as shown in Fig. 3.

However, the reassignment method moves time-frequency
components not only in the frequency direction but also in the
time direction, which naturally requires look-ahead frames.
For example, in the case of Fig. 2, the bottom right bin is
reassigned to the position that is three frames before, which
requires at least three look-ahead frames. The requirement of
look-ahead frames directly increases the processing latency
which is undesirable for real-time application. Therefore, the
amount of the look-ahead frames should be reduced for
broaden the application range of FifthNet.

4These equations may also be different from those in other papers due to
the definition of STFT in Eq. (1) (see also Footnote 3).
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Fig. 4. Example of reassignment of chirp (top) and sinusoid (bottom). The
middle column performed both time- and frequency-directional reassignment,
while the right column performed only frequency-directional reassignment.

III. PROPOSED METHOD

The inconvenience of the reassignment method used in
FifthNet comes from the fact that the reassigned temporal
position %,y moves back and forth relative to the original po-
sition ¢. In this paper, we propose to omit the time-directional
reassignment and show that only the frequency-directional
reassignment is sufficient for automatic chord recognition.

A. Feature Extraction by Synchrosqueezing Transform

The synchrosqueezing transform [21] is another sparse time-
frequency analysis method that is proposed independently
from the reassignment method. Although the context and mo-
tivation of the proposals were different, the synchrosqueezing
transform can be viewed as a variation of the reassignment
method where only the frequency position is reassigned®.

Our proposal is simple: omitting the time-directional re-
assignment in Eq. (6) from FifthNet. In other words, we
perform only the frequency-directional reassignment using
Eq. (5), which results in the synchrosqueezing transform. This
modification allows us to remove the requirement of look-
ahead frames because synchrosqueezing can be calculated
using only a current time frame. Our proposal might sound
ad hoc, but we have two logical reasons for doing so.

The first reason is that the target of FifthNet is chord.
As illustrated in Fig. 2, the time-directional reassignment is
necessary for localizing a chirp signal (or any other rapidly
varying component). However, it is not necessary for sinu-
soidal components. As shown in Fig. 4, a sinusoidal signal can
be localized by only the frequency-directional reassignment.
Since the components related to chord are mainly sinusoidal
(i.e., frequency modulation of musical instruments for chord
is not so large), omitting the time-directional reassignment
should not degrade the chord recognition performance.

SEven though we do not consider signal reconstruction in this paper, we
use the term “synchrosqueezing” merely for convenience.
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Fig. 5. Network structure of FifthNet. “Conv”, “Avg.Pool”, “Pad”, and “BN”
stand for convolution, average pooling, padding, and batch normalization,
respectively. The ReLU activation is applied after each convolutional layer.
The color of each block on the left side corresponds to those of the details
shown on the right side. The number of parameters (e.g., kernel sizes of the
convolutional layers) was set to the same as that in [14].
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The second reason is that FifthNet applies the feature
cleaning based on Eq. (7). Using the mixed partial deriva-
tive of phase, non-sinusoidal components are removed from
pitch features. Therefore, after the feature cleaning, most of
the remaining components are sinusoidal. In such case, the
time-directional reassignment can be omitted because rapidly
varying components are removed by the feature cleaning. The
experiment in the next section will show that the proposed
omission of the time-directional reassignment does not have
negative effect on chord recognition performance.

IV. EXPERIMENT

An experiment was performed to see how the proposed
omission of the time-directional reassignment affects chord
recognition performance.

The network architecture of FifthNet is shown in Fig. 5. The
input feature is first processed by a network called B5, and
then its output is processed by another network called MS5.
The intermediate feature is called pitch class representation
(PCR). The final output is a 25-dimensional vector, where
each dimension corresponds to major or minor chord with
12 root positions, and the last dimension is reserved for “no
chord”. The number of parameters (e.g., kernel sizes of the
convolutional layers) was set to the same as that in [1416.

The Schubert Winterreise dataset [29] was used for the train-
ing. It consists of 48 piano songs for about 4 hours duration
and contains audio signals and annotated chord ground truths.
We used 40 songs for training, and 8 songs for testing. To
prevent overfitting, data augmentation was performed using a
pitch shifter, where the pitch of the input signal was randomly
shifted for —5 to +6 semitones.

The trained task was classification of major and minor triad
chords. Since the dataset contains other chords like 7th chords,
the annotated ground truths chords were modified as follows:
all minor and diminished chords are mapped to the closest
minor chords, while all the other chords were mapped to the

6See Table 2 of [14] for B5 and Table 3 of [14] for M5.
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Fig. 6. Median of chord classification accuracy during training. The accuracy
was calculated at every 10 epoch for every batch, and median was taken. The
original FifthNet and the proposed FifthNet are labeled as “Reassignment”
(red) and “Synchrosqueezing” (yellow), respectively. As a baseline, FifthNet
without reassignment was also tested and labeled as “STFT” (blue).

closest major chords, which is a common way to perform
major-minor classification tasks.

The networks were trained for 300 epochs using the Adam
optimizer with batch size of 128 and learning rate of 0.001.
The accuracy was calculated as follows.

Total number of correctly estimated segments

A =
ce [%] Total number of segments

€))

First, we tested the accuracy during the training. For every
10 epoch, the accuracy was calculated for each batch, and the
median of calculated accuracy values was taken. The result
is summarized in Fig. 6. The proposed FifthNet is labeled as
“Synchrosqueezing” (yellow) and the conventional FifthNet
is labeled as “Reassignment” (red). As a baseline, FifthNet
without using the reassignment method was also tested and
is labeled as “STFT” (blue). As in the figure, the accuracy
of the baseline (blue) reached the ceiling around 20 epochs.
Interestingly, the original FifthNet (red) and the proposed
FifthNet (yellow) required 10 and 20 more epochs, respec-
tively, to reach the ceiling. Although the accuracy changes for
about +1 or +2 % as training proceed, the original FifthNet
(red) and the proposed FifthNet (yellow) outperformed the
baseline in most epochs. In addition, the proposed FifthNet
(yellow) outperformed the original FifthNet (red) in many
cases. This result indicates that the proposed omission of time-
directional reassignment can improve the accuracy of FifthNet
even though the computational effort is reduced.

For seeing the detail of the result, we divided the test data
into 60 sub groups where each group contains 200 test data.
The accuracy values for the 60 trials are summarized in Fig. 7,
where the networks at the 100th, 200th, and 300th epoch
were used for classification. The median values of the baseline
model (blue) were 81.25 %, 80.75 %, and 81.25 % at 100th,
200th, and 300th epoch, respectively. Those of the original
FifthNet (red) were 82.25 %, 82.0 %, and 81.0 %, and those
of the proposed FifthNet (yellow) were 83.25 %, 82.75 %, and
81.75 %, respectively. In all epochs, the proposed FifthNet
(yellow) achieved the highest accuracy in terms of median.
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Fig. 7. Box plot of accuracy values calculated using 60 sub groups of test data.
The labels and colors are the same as those in Fig. 6. The networks at 100th
(left), 200th (center), and 300th (right) epoch were used for classification.

Roughly speaking, the original FifthNet (red) and the proposed
FifthNet (yellow) obtained about 1 % and 2 % higher accuracy,
respectively, compared to the baseline (blue).

One possible reason for this improvement is that the time-
directional reassignment can mix up several components when
each component is not isolated. Since music signal is natu-
rally a mixture of sinusoidal components, components in the
time-frequency bins are often mixed. Then, the reassignment
vectors may point incorrect positions unlike those for a single-
component signal. This can result in less accurate pitch
features and hence less accurate classification. Our proposal
can avoid such mixing of components during reassignment.

Note that our motivation was not to improve the accuracy
but to remove the look-ahead frames of FifthNet for making it
on-line. Fortunately, our proposal unexpectedly improved the
accuracy. From our result, we recommend to omit the time-
directional reassignment from FifthNet in all aspects.

V. CONCLUSION

In this study, we proposed to omit time-directional reas-
signment used in FifthNet. This simplification allows us to
remove the look-ahead frames of FifthNet, which makes it
more suitable for real-time execution. As an additional benefit,
the proposed modification improved the accuracy of chord
recognition, which was confirmed by the experiment. Although
our proposal is simple, it provides one important and unavoid-
able improvement toward real-time execution of FifthNet. In
the future works, we will consider real-time implementation
of the proposed FifthNet for real-time applications.
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