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Abstract—The music industry is interested in the future success
of a song and its presence in popular rankings such as the
Billboard charts. However, a song’s popularity might be impacted
by variables such as music trends and social influences, which
are indifferent to audio signals. In this paper, we present HSP-
TL, a deep learning model, to identify likely hit songs. Our
work combines temporal information and features derived from
audio and lyrics to estimate the success of a recording. We
adopt the concept of the triplet loss function to minimize the
distance between objects with similar popularity. Also, we use
convolutional neural networks on 2-D low-level audio features,
contrary to the current approach. We use pre-trained language
models for text-based feature extraction. Our method is evaluated
on the Hit Song Prediction Dataset, which we enrich with the
lyrics of each song. Our results show that the inclusion of
lyrics improves song uniqueness and reflects musical trends. The
proposed model outperforms the current approach by up to 8%.

Index Terms—Hit Song Prediction, Lyrics, Deep Learning,
Metric Learning

I. INTRODUCTION

The characteristics of a song’s popularity and the emergence
of a rising star are objects of interest to the music industry,
which seeks to determine what causes a song’s success and
tailor new releases according to popular trends [1], [2]. Mil-
lions of new songs are released each year, and only a relatively
small percentage of them become hits [2].

Many studies focus on predicting the success of songs
in the well-known charts [3]–[5] or on the popularity of
songs on streaming platforms [6], [7]. Research approaches
mainly treat the problem of song popularity prediction either
as a classification [2], [6], [8] or regression task [5], [9].
Most existing studies also include factors independent of
sound recordings, such as social media presence [9], [10] or
user behavior [11]. In terms of indicating popularity, some
approaches use the presence of the song on Spotify [6], [7].
Particularly, Martı́n-Gutiérrez et al. [6] introduce an auto-
encoder to compress high-level features consisting of audio,
text, and metadata to rank tracks based on their popularity on
Spotify. In addition, some studies attempt to model user behav-
ior and extract indicators through users’ activity. Demetriou et
al. [12] conduct a user study to identify the most influential
factors that contribute to users liking or disliking a song. The
experiments in [11] demonstrate the correlation between song
popularity and changes in user behavior over time and provide
a predictive model for the next month’s music trends using

an LSTM network. However, most recent work [5], [13] use
fundamental audio features as predictors to explain hit songs.
In particular, the study [5] presents a model for Billboard
ranking that uses low & high-level features of songs from
the Million Song Dataset [14]. Alternatively, other efforts
exploit the use of song lyrics to model the predictability of
hits [6], [15]. Effort [16] introduces ranking loss for hit song
prediction. Specifically, they employ a commercial dataset
with daily play counts to train a CNN network with Euclidean
loss and pairwise ranking loss in order to learn from high-
and low-level audio features the relative ranking relationships
between songs.

Our work uses audio-based features in combination with
attributes generated by song lyrics using pre-trained language
models to enlarge the predictive factors which affect the suc-
cess of a recording in terms of Billboard ranking. We propose
an extension of the deep-learning architecture of [5], regarding
the processing of low-level audio features using convolutional
neural networks, which contributes to dimensionality reduction
and increases predictive performance. We conduct a compre-
hensive analysis of the contributions of different features to
the prediction performance, revealing the importance of lyrics-
related features and the potential of incorporating them with
audio features in hit song prediction models. We also adopt
the concept of metric learning using triplet loss [17], [18] to
enhance the separability of the points of hits and non-hits in
the produced embedding space. Compared to the work of [5],
our approach achieves an 8.51% improvement in accuracy and
a 7.22 reduction in RMSE. Finally, our study contributes to
the extension of Hit Prediction Dataset [5] by adding song
lyrics embeddings for hit song prediction benchmarking. For
reproducibility, we make our dataset publicly available1.

The rest of the paper is structured as follows. Section II
describes the process of data creation and the feature sets
used for the model. Section III contains the model overview,
presenting the details of the model layers. Section IV contains
a reference to our experimental setup, the implementation of
the model, and a discussion of its strengths and limitations.
Additionally, we provide an analysis of the performance of
the proposed model in comparison to previous approaches.
Finally, in section V we provide an overview of the results and
contributions and conclude with an outlook on future work.

1https://github.com/Orfium/hsp-lyrics-dataset
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II. SONG FEATURES & DATASET OVERVIEW

A recent study [5] provides the Hit Song Prediction Dataset,
which contains the release year and low & high-level audio-
based features for 95, 067 songs divided into 2 classes of
5, 932 hits, along with their respective billboard rank, and
89, 235 non-hits. We augment this dataset with features derived
from the lyrics of each sound recording. We use the Genius2

database, which contains a collection of approximately 25
million songs and lyrics, and we query its API using the song
titles and artist names for the 95, 067 cases. Since Genius
returns multiple results per query, we validate them using
a BERT-based text matching approach [19]. We match the
query metadata with the metadata of each result and keep
the pair with the highest score. From the 95, 067 cases we
retrieved 11, 634 lyrics. The final dataset contains 5, 962 non-
hits and 5, 672 hits with three feature groups: audio-based
features (512 low & 50 high level features computed by [5]),
temporal features (release year) and text-based features (768
BERT-embeddings from lyrics).

Low-level (LL) features result from computing descriptors
that characterize the overall loudness, the dynamics and spec-
tral shape of the signal, the rhythm (including beat positions
and BPM value), and the tonal information (including chroma
features, keys, and scales) [20]. High-level (HL) features such
as mood, genre, gender of voice etc. are computed by pre-
trained models from the Essentia Framework [21] using a 30
second song’s audio segment. We normalize numerical data
(e.g. average loudness) to [0, 1] using min-max normalization
and we convert categorical data (e.g. the chords key, scale) to
one-hot vector representation.

Regarding text-based features, we conclude that our dataset
includes 11.51% non-English lyrics by using automatic lan-
guage detection3. Thus, we use the Multilingual BERT, which
is a variation of BERT [22] but trained in 104 different
languages. We feed the BERT model with the lyrics to generate
the third set of features.

III. MODEL OVERVIEW

The core idea of our contribution is to characterize record-
ings using metric learning and a combination of audio fea-
tures, text features extracted from song lyrics, and temporal
information. We base our model architecture on the work of
Zangerle et al. [5], which uses low & high-level audio features
and release year to estimate hits on Billboard. However, this
study does not include information from lyrics, which is an
important factor as Demetriou et al. [12] claims. We introduce
the lyrics features using the pre-trained language model of
BERT [22]. In addition, instead of flattening the low-level 2-
D features as in [5], we employ convolutional layers as part
of our architecture. Furthermore, we enforce the separation of
hit & non-hits in the embedding space through metric learning
using triplet loss [17].

2https://genius.com/
3https://spacy.io

We propose the model HSP-TL, whose architecture is
shown in Figure 1. Step 1 of the model is the process of
vectorizing the data features. High-level audio features are
represented by a probability value in the range of [0, 1]
corresponding to the likelihood of the feature (e.g., 0.9 rock).
The release year of the song is normalized between [0, 1] as
mentioned before. Therefore, both are simply concatenated
with the feature vector in step 2. Low-level features consist of
two-dimensional data of size (13, 13) (e.g. the MFCCs of the
audio data), one-dimensional data (e.g. melbands), and single
values (e.g. overall loudness in dB).

Study [5] introduces the concept of Deep Part which handles
the low-level features. We extend Deep Part, by using the
architecture shown in Figure 2. The Deep Part is responsible
for the dimensionality reduction of the data to single values.
These values are concatenated with the feature vector in step
2. In particular, it contains a Convolutional Neural Network
(CNN) that processes two-dimensional data and consists of 3
layers. The first is a 2-D convolutional layer with a kernel size
of (3, 3) and ReLU activation, followed by 2-D max-pooling
with a (2, 2) kernel and a dropout layer with probability
p = 0.2. It accepts a single channel of two-dimensional
data and outputs 32 channels. The second layer is again a
2-D convolutional layer with kernel size (3, 3) and ReLU
activation, followed by 2-D max-pooling with (2, 2) kernel
and a dropout layer with probability p = 0.2. It accepts
32 channels and outputs 64 channels. The third layer is a
fully connected layer with ReLU activation, that accepts the
output of the last max-pooling layer, flattened, and outputs a
single value. Each 1-D feature i of size Ni is assigned a fully
connected layer with input dimension Ni and outputs a single
value.

We feed the language model with the lyrics of each song.
We tokenize the raw text in the appropriate form for the pre-
trained BERT model, including truncation and max padding
to 512 in length, and pass it through BERT. We extract the
embedding vector of the last BERT layer and perform a
pooling procedure by selecting the embedding vector of the
first token, i.e., the CLS token, resulting in a one-dimensional
vector of 768 length, followed by a dropout layer with proba-
bility p = 0.1. This vector represents the lyrics features for a
single song. In step 2, the concatenation layer combines the 4
feature sets, that include 50 high-level and 512 low-level audio
features, 1 release year feature, and 768 text-based features,
aggregating 1, 331 features. In step 3, we add two consecutive
layers that include a dense layer with batch normalization and
a ReLU activation function and both output the same size as
the concatenation layer. In step 4, we pass the output of step
3 to a fully connected layer, without an activation function,
which outputs a vector length of 64, corresponding to the
embedding of the song. The model architecture ends with
steps 5 and 6, which illustrate metric learning using triplet
loss, calculated as follows:

loss = max {d(xa, xp)− d(xa, xn) + γ, 0} (1)

where γ is a margin parameter, xa, xp, xn are the anchor,
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Fig. 1. The general block schema of the deep network architecture of the HSP-TL model outlining the principal functionalities and data components; the
dashed line rectangles represent non-trainable layers.
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Fig. 2. The deep network architecture employed for the module Deep Part;
the dashed line rectangles represent non-trainable layers.

positive and negative embeddings, respectively, and d is a
distance function, which in our case is the Euclidean distance.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

We evaluate the replicated (in PyTorch) model described
in [5] and compare it with two proposed models, which
are modified versions of HSP-TL architecture. In the first
model, HSP-Linear-reg, we treat the 2-D features as 1-D by
flattening them. We then assign a fully connected layer to
each flattened feature and remove the CNN entirely from the
Deep Part. We also modify the fully connected layer from
step 4 to output a single value corresponding to the regression
value. Our second model is the HSP-reg, in which we only
modify the fully connected layer of step 4 to output a single
value corresponding to the Billboard rank. All models use the
loss function MSE (step 5) for training. Also, we conduct
experiments on the performance of the combinations of the
HL, LL, and lyrics feature sets for the HSP-reg model.

Furthermore, we test alternative loss functions and adapt
metric learning to address the binary classification problem
of hits and non-hits having all the features (HL+LL+lyrics).
Binary Cross Entropy Loss (BCE) and Triplet Loss (TL) form
two different models, HSP-bce and HSP-TL, respectively. The
HSP-bce model uses the same architecture of HSP-TL in steps
1 - 3, as shown in Figure 1. We modify the fully connected

layer of step 4 to output a single value corresponding to each
class (hit, non-hit) and use the BCE as a loss function in the
training phase. To make the training of the HSP-TL model
more robust, we use hard sampling. Hard sampling refers
to selecting triplets that are hard to classify correctly, i.e.,
triplets where the distance (Euclidean) between the anchor
and the negative is very close to the distance between the
anchor and the positive. By selecting hard triplets, the model
is forced to learn more discriminative embeddings that can
better separate data points from different classes [23]. We
evaluate the classification capabilities of the HSP-TL network
by extracting the embeddings of the training set and the testing
set and using them as the database and query set, respectively.
For each query, we compute the Euclidean distance from all
database embeddings and keep the k with the lowest distance.
For these k embeddings, we choose their dominant class as
our predicted class. After experimentation, we conclude that
k = 11 is the best value.

We use 10-fold cross-validation to evaluate the quality of
the predictive models. For the baseline model [5] and {HSP-
Linear, HSP}-reg models, the prediction reflects the rank in
Billboard, ranging from 1 to 100. Same as [5], we assign the
value of 150 to the songs that never made the Billboard list,
corresponding to non-hits. We evaluate the performance of our
model using the task-related metrics of Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) and we use
the threshold of 100 to report the accuracy scores of each
model and see how they perform in discriminating between
hits and non-hits.

All models are implemented in Python using the PyTorch
framework4 and the Transformers library5. The maximum
sequence length of the BERT tokenizer is set to 512, with
truncation and maximum padding activated. The learning rate
is set to 10−3. For triplet loss, we choose a margin of γ = 0.1
and for hard triplets selection, we use cosine distance, while
for computing our database and queries during evaluation we
use Euclidean distance. We choose a batch size of 64 and
100 epochs for training, with early stopping at 10 epochs. We
store the respective checkpoint with the lowest loss value in

4PyTorch: https://pytorch.org/
5Transformers: https://huggingface.co/transformers/
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Evaluation MetricsModel Accuracy RMSE MAE

Zangerle et al. [5] 71.71% 58.35 50.03
HSP-Linear-reg 77.04% 53.21 43.06

HSP-reg 79.14% 51.13 38.98

TABLE I
RESULTS FOR HIGHEST RANK PREDICTION ON THREE DIFFERENT

ARCHITECTURES; THE BEST RESULTS ARE PRINTED IN BOLD FONT.

the validation set. As an optimizer, we employ the adaptive
learning rate optimization algorithm, Adam.

B. Results and Discussion

The results in Table I show that the addition of text-based
features and our model modifications for LL features improves
previous work [5]. In particular, the HSP-reg model achieves
the highest value of 0.79 accuracy and the lowest RMSE and
MAE values of 51.13 and 38.98, respectively.

We conclude that enriching the feature vector with multiple
types of sound recording features is beneficial for prediction
performance as Table II presents. It is worth noting that the
HL audio features, which reduce the recordings to a specific
mix of categories, are highlighted as more important factors
than the LL features. However, training exclusively with song
lyrics outperforms the exclusive use of audio-based features.
This suggests that the features generated from the song lyrics
have a positive effect on prediction and demonstrates the
effectiveness of the transformer architecture. We should note
that the combination of song lyrics and HL audio features is
only slightly less accurate than the combination of all features,
indicating that this combination is sufficient to characterize the
success of a song.

We also note that the RMSE and MAE gradually decrease
and reach the maximum difference of 15% and 18% re-
spectively, when we add the full set of features. However,
the observed error measures in the regression are still high,
suggesting that the model does not have the predictive power to
estimate the exact Billboard rank. We consider that the choice
of the target value of non-hits to 150 affects the error bounds
of the regression model.

The use of different loss functions not only improves
performance but also shows that metric learning effects ben-
eficially to the estimation of hit songs, as Table III describes.
Both alternative loss functions (BCE and MSE) improve the
accuracy of the model, with the triplet loss having the highest
value of 0.80. More specifically, the prediction of the non-hits
class is more precise than the prediction of the hits class for
all models and ranges from 0.81 to 0.87. On the other hand,
the recall values for hits are higher than those for non-hits and
vary between 0.82 and 0.89. The results using triplet loss show
that the points of hits and non-hits in the produced embedding
space effects efficiently the separability of the two classes.

We have to acknowledge that this research work is limited to
the audio and text features of a song, which are indifferent to

Evaluation MetricsFeature Class Accuracy RMSE MAE

HL 68.80% 60.27 51.21
LL 62.49% 66.45 57.65

HL+LL [5] 72.19% 58.57 50.83
Lyrics 72.98% 57.21 45.17

HL+Lyrics 77.92% 53.07 39.91
LL+Lyrics 75.81% 55.81 43.03

HL+LL+Lyrics 79.14% 51.13 38.98

TABLE II
RESULTS FOR EACH FEATURE CLASS, USING HSP-REG ARCHITECTURE;

THE BEST RESULTS ARE PRINTED IN BOLD FONT.

Evaluation MetricsModel Accuracy Precision Recall

HSP-reg 79.14% 73% / 87% 89% / 69%
HSP-bce 79.05% 74% / 85% 87% / 72%
HSP-TL 80.22% 79% / 81% 82% / 78%

TABLE III
BINARY CLASSIFICATION; RED REPRESENTS THE CLASS OF NON-HITS,

BLUE REPRESENTS THE CLASS OF HITS.

external variables such as music trends, the historical presence
of certain artists in the music industry, or marketing promotion
by record labels. However, we believe that this is a fair way to
evaluate new releases without external knowledge. We should
note that hits represent the outliers in the population of songs
and therefore any dataset for this task suffers from imbalance.
In addition, the dataset is skewed towards U.S. and U.K. tracks
that dominate the Billboard charts. The dataset also includes
songs released through 2011 and therefore does not reflect
today’s trends and culture. In addition, the study [5] does
not report the exact data split used to train its models, which
explains for the inconsistency of the results.

V. CONCLUSIONS & FUTURE WORK

In this paper, we propose a novel deep learning model,
namely HSP-TL, which combines song lyrics with descriptive
audio features and temporal information to predict hit songs.
Our results show that the proposed model performs best
compared to state-of-the-art deep networks, on the Hit Song
Prediction Dataset. We show that the inclusion of lyrical con-
text enhances song uniqueness and reflects musical tendencies.
We intend to improve the feature extraction by fine-tuning the
language model specifically for song lyrics and using updated
techniques for higher-quality audio features. We aim to update
the existing dataset with newly released hits to test the model’s
efficiency on current music trends. Furthermore, we plan to
explore the impact of various elements, including the social
media presence and/or the profile of the artist, on the overall
success of the song.
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