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Abstract—Polyphonic Piano Transcription has recently expe-
rienced substantial progress, driven by the use of sophisticated
Deep Learning approaches and the introduction of new subtasks
such as note onset, offset, velocity and pedal detection. This
progress was coupled with an increased complexity and size of the
proposed models, typically relying on non-realtime components
and high-resolution data. In this work we focus on onset and ve-
locity detection, showing that a substantially smaller and simpler
convolutional approach, using lower temporal resolution (24ms),
is still competitive: our proposed ONSETS&VELOCITIES (O&V)
model achieves state-of-the-art performance on the MAESTRO
dataset for onset detection (F1=96.78%) and sets a good novel
baseline for onset+velocity (F1=94.50%), while having ∼3.1M
parameters and maintaining real-time capabilities on modest
commodity hardware. We provide open-source code to reproduce
our results and a real-time demo with a pretrained model 1.

Index Terms—deep learning, polyphonic piano transcription

I. INTRODUCTION

A. Polyphonic Piano Transcription

The task of Polyphonic Piano Transcription (PPT) is useful
for downstream tasks like musical analysis and resynthesis.
Consider an audio waveform x(t) ∈ RT with time T that cor-
responds to a piano performance of a score S; then the task of
PPT is to recover S from x. Here, S is a collection of N note
events {Nn := (kn, vn, �n, �n)}Nn=1, where k ∈ {1, . . . ,K}
specifies the key (typically K = 88). The value v ∈ [0, 1]
indicates the intensity of the event (also called key velocity).
The key onset (pressing) and offset (releasing) timestamps are
specified by � and �, respectively, where 0 ≤�n<�n≤ T ∀n.

There has been extensive effort in automating PPT, typ-
ically articulated through challenges like the popular Music
Information Retrieval Evaluation eXchange (MIREX) [1] and
featuring different techniques like handcrafted features, spec-
trogram factorization, probabilistic models [2], [3] and, more
recently, Deep Learning (DL) [4]. PPT is typically evaluated
by comparing the recovered score Ŝ with the ground truth S on
a test set, in an event-wise manner. Prominent efforts in curat-
ing datasets like MAPS [5], [6], SMD [7] and MusicNet [8]
were affected by imprecise annotations, insufficient training
data, unrealistic interpretations and/or constrained recording
conditions, which made evaluation more difficult and impeded

Work done as independent researcher at the IAMúsica project supported by
the Institut d’Estudis Baleàrics, Balearic Islands.

1Setup https://github.com/andres-fr/iamusica training
Demo: https://github.com/andres-fr/iamusica demo

Fig. 1: Log-mel spctrogram (X) of a virtuosistic excerpt
from the MAESTRO test set, followed by the corresponding
velocity (R̂V ) and last-stage onset (R̂(3)

� ) predictions, as well
as the ground truth piano roll 1�3

(see Section II for details).

the establishment of a unified benchmark for PPT [9]. The
introduction of the MAESTRO dataset [9] addressed many of
these issues, by providing ∼200 hours of precisely annotated,
high-quality audio data, encompassing a large variety of vir-
tuosistic compositions, pianists and recording conditions, and
incorporating evaluation splits. As a result, it quickly became
a popular benchmark. Still, all pianos in MAESTRO are fairly
similar: to capture more general settings and satisfy the ever-
growing demand for training data, [10] curated the GiantMIDI
dataset, by sourcing over 1000 hours of piano music from
YouTube and annotating them using DL [11].

B. The State of the Art in PPT

One influential effort applying DL to PPT was [12]. Their
work cemented the following main trends:

a) Spectrograms: Despite promising efforts to use the
x(t) waveforms as DL inputs [13], time-frequency representa-
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tions like the spectrogram [14, ch.19] remain competitive for
PPT and discriminative audio tasks in general [11], [15].

b) Piano roll supervision: Consider an alternative repre-
sentation of S, called piano roll R ∈ [0, 1]K×T (see Figure 1),
where entries R(k, t) encode the activity of channel k at
time t (zero if inactive). This type of supervision consists in
training the model to output a piano roll R̂ that predicts some
ground truth R, by minimizing the binary cross-entropy loss:
lBCE(R, R̂)=⟨R,−log(R̂)⟩+⟨(1−R),−log(1−R̂)⟩. Often,
the ground truth is binarized and we have 1 ∈ {0, 1}K×T

instead of R. This approach requires to decode the predicted
piano roll R̂ to obtain the event-based representation Ŝ =
decH(R̂), typically by using a heuristic H , e.g. grouping
consecutive active frames into singe notes.

c) Computer Vision: PPT can be tackled effectively by
treating spectrograms and piano rolls as images, and models
like Convolutional Neural Networks (CNNs) work well with
minor adaptions.

A major turning point was ONSETS&FRAMES (O&F) [16],
which uses a sub-network to first predict a piano roll R̂�
encoding the probability of an onset (trained with a mask
1� that is active only when a key is pressed), and then uses
another subnetwork to predict the frames R̂N conditioned on
R̂� (trained with a mask 1N , active for the whole duration
of each note). O&F is then trained jointly via a multi-task
loss lBCE(1�, R̂�) + lBCE(1N , R̂N ). O&F achieved a steep
improvement in all PPT benchmarks, and also introduced a
novel subtask, note velocity, modelled with a third sub-network
that predicts a velocity piano roll R̂V trained via masked ℓ2-
norm loss lV = ⟨1�, (RV − R̂V )

2⟩. Due to its unprecedented
effectiveness and versatility, O&F became a popular baseline
[17], [18], but this was at the expense of increased complexity,
including more elaborate decoder heuristics, a larger model,
and the incorporation of bi-RNN layers [19], [20], which
preclude real-time applications.

More recently, [11] pointed out issues with temporal pre-
cision on piano rolls, incorporating a trainable REGRESSION
model to enhance precision. They further expanded the model
including sustain pedal detection capabilities. In [21], an off-
the-shelf TRANSFORMER [22] setup was used to produce Ŝ
directly from spectrograms in an end-to-end fashion. Apart
from their good performance, both systems have in common
their substantial size, increased time resolution and replacing
decoder heuristics with an end-to-end differentiable solution,
suggesting that decoding is a performance bottleneck.

C. Proposed Contribution for PPT

These state-of-the-art improvements in performance came
entangled with increased complexity in the form of larger
models, additional components and new sub-tasks [18]. Under-
standing and disentangling this complexity is an active field
of research: Alternative PPT sub-task factorizations that do
not rely on O&F were proposed, like nonlinear denoising
vs. linear demixing [23], sound source vs. note arrangement
[24] and ADSR envelopes [25]. General approaches like using

invertible neural networks [26], reconstruction tasks [27] and
additive attention [18] were also explored.

In this work, we pursue the orthogonal goal of achieving
real-time capabilities. For that, we observe that the masked
loss lV imposes time-locality around the onsets, and follow
up on several ideas: the importance of the onsets [16] as well
as decoder heuristics [18], and the idea that note velocity
is naturally associated with the onset [11]. We propose that
a convolutional end-to-end method for onsets and velocities
leads to efficiency gains and affordable real-time capabilities
without compromising performance, and that efficient decoding
heuristics replace the need for high temporal resolution and
complex inference schemes.

We present ONSETS&VELOCITIES (O&V), featuring:
1) State-of-the-art performance for onset detection and a

good baseline for onsets+velocities on MAESTRO.
2) A substantially reduced CNN (no recurrent layers) based

on piano rolls at 24ms resolution, enabling affordable
real-time inference on modest hardware.

3) A straightforward decoding mechanism, enabling a
multi-task training scheme without any data augmen-
tations or extensions.

In Section II we present our O&V method. Section III
presents experiments substantiating our claims. We also pro-
vide a PyTorch [28] open-source implementation with a real-
time demo. Section IV concludes and proposes future work.

II. METHODOLOGY

A. Model

Given a waveform x(t) ∈ RT at 16kHz, we compute
its Short-Term Fourier Transform (STFT) [14] with a Hann
window of size 2048, and a hop size δ=384 (i.e. a time
resolution of ∆t=24ms). We then map it to 229 mel-frequency
bins [29] in the 50Hz-8000Hz range, and take the loga-
rithm, yielding our input representation: a log-mel spectro-
gram X(f, t′) ∈ R229×T ′

, where T ′ = T
δ is the resulting

“compact” time domain (see Figure 1). We also compute the
first time-derivative Ẋ(f, t′) := X(f, t′) − X(f, t′ − 1) and
concatenate it to X , forming the CNN input. Using the same
∆t, we time-quantize the MIDI annotations into a piano roll
RV ∈ [0, 1]88×T ′

, where RV (kn, t
′
n) contains the velocity if

key kn was pressed at time ∆tt
′
n± ∆t

2 , and zero otherwise.
We further binarize RV , yielding 1�.

The complete CNN is presented in Figure 2. We highlight
the following design principles:

a) No recurrent layers: Motivated by [30], [31], we
follow the established CNN design of convolutional stem and
body, followed by a fully connected head, making use of
residual bottlenecks [32].

b) No pooling: Motivated by [33], all residual bottle-
necks maintain activation shape, and conversion from input to
output shape is done in a single depthwise convolution layer
[34], shown to be efficient and effective [35]. Note that the
convolutions in the input domain (spectrogram) have vertical
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dimensions but the convolutions in the output domain (piano
roll) do not, since we assume that neighbouring frequencies
are related but neighbouring piano keys aren’t.

c) Multi-stage: Inspired by OpenPose [36], O&V fea-
tures a series of residual stages that sequentially refine and
produce the output. This is useful for real-time applications,
since stages can be easily removed without need for retraining.

d) Temporal context: At its core, O&V features the
Context-Aware Module (CAM) [37], which is a residual bot-
tleneck that combines time-dilated convolutions and channel
attention [38]. Inspired by TCNs [39] and Inception [40], we
aim to capture the temporal vicinity of an onset efficiently.

e) Model regularizers: At the input and before each out-
put, O&V features Sub-Spectral Batch Normalization (SBN),
i.e. one individual BN per vertical dimension [41], [42]. We
add dropout [43], [44] after the parameter-heavy layers. We
use leaky ReLUs [45], [46] as nonlinearities.

f) Time locality: The time-derivative Ẋ is a handcrafted
input feature that directly represents intensity variations.

During inference, O&V produces one piano roll per on-
set stage (R̂(1)

� , R̂(2)
� , R̂(3)

� ) and one velocity piano roll
R̂V (see Figure 2(d)). Then, our proposed decoder Ŝ :=

decσ,ρ,µ(R̂(3)
� , R̂V ) follows a simple heuristic: temporal Gaus-

sian smoothing (smooth) with variance σ2 followed by non-
maximum suppression (nms), thresholding ρ and shifting µ,
yielding the predicted score Ŝ with note onsets and velocities:

�̂ :=
{
(k, t′) : nms

(
smoothσ(R̂(3)

� )
)
(k,t′) ≥ ρ

}
Ŝ := {(kn, R̂V (kn,t

′
n), ∆tt

′
n+µ) : (kn, t

′
n) ∈ �̂ρ}

(1)

The nms operation consists in zeroing out any (k, t) entry
that is strictly smaller than (k, t + 1) or (k, t − 1). The note
events are read at the resulting locations, and shifted by a
global constant µ. In this work, we use the values σ=1, µ=
−0.01s, ρ=0.74, obtained via cross-validation of the trained
CNN on a subset of the MAESTRO validation split (note that
this is different from the test split used for evaluation). While
the optimal ρ fluctuates during training, we found σ=1, µ=
−0.01s to be stable.

B. Training

We train our CNN to predict onset probability and velocity
jointly via minimization of the following multi-task loss:

l�V (1�3
, (R̂(1)

� , R̂(2)
� , R̂(3)

� ),RV3
,R̂V ) :=

3∑
i

lBCE(1�3
, R̂(i)

� ) + λ · lV ′(RV3
,R̂V ), where

lV ′(RV3
,R̂V ) :=〈

1�3
,
(
RV3

· −log(R̂V )
)(
(1−RV3

) · −log(1−R̂V )
)〉

The 1�3
and RV3

rolls are a straightforward modification
of 1� and RV , where each active frame at (k, t) is also
extended into t+ 1 and t+ 2 (i.e. note onsets span 3 frames
instead of one). This simple extension was crucial to achieve
target performance, and combined with our decoder, allowed

CAM
Input

B×C×H×W
TDConv2d ξ2(kh×kw)

TDConv2d ξ1(kh×kw)

. . .

GlobalAvgPool MLP Sigmoid

⊕ × +
CAM

Output
B×C×H×W

B×C B×C

B×C

B×C×H×W

(a) Diagram of a CAMξ1,ξ2,...(kh × kw), based on [37]. The middle branch
concatenates (⊕) multiple time-dilated convolutions (TDConv), each with time
dilation ξ. The output channels of each TDConv is H divided by the number
of TDConv layers being concatenated, and padding is adjusted so shape is
preserved. The top branch acts as a channel-wise attention mechanism (×),
featuring a Multi-Layer Perceptron (MLP) acting as a bottleneck (we use 2 layers
with ReLU activation and 8 hidden dimensions). The bottom branch is a residual
connection (+).

(X, Ẋ)
B×2×F×T’

SBNF

Conv2d(3×3)

BN→LReLU

CAM1,2,3,4(3×5)

BN→LReLU

DepthConv16F�16K(1)

BN→LReLU

Stem output

B×16×F×T’

B×16×F×T’

B×16×K×T’

×3

(b) Diagram of the Stem, which is
a CAM-powered residual CNN. The
SBN has F frequency bands (one per
vertical dimension). The ×3 braces
indicate 3 sequential blocks. Note the
single-step F�K transition via depth-
wise convolution DepthConv(1)
with temporal kernel width of 1.

Stage input
B×16×K×T’

Conv2d(1×1)

BN→LReLU

CAM1,2,3(1×11)

BN→LReLU

Conv2d(K×3)

BN→LReLU→Dropout

Conv2d(1x1)

BN→LReLU→Dropout

Conv2d(1x1)

SBNK

Sigmoid

R̂�

B×12×K×T’

B×12×K×T’

B×200×1×T’

B×200×1×T’

B×K×1×T’ ≡ B×K×T’

×3

(c) Diagram of an onset Stage�. It
is a modification of the stem, followed
by convolutions that act like an MLP
moving across time dimension T’. We
add dropout to the MLP. The velocity
StageV is like Stage�, except it
has only {×1} CAM blocks and 17
input channels instead of 16.

(X, Ẋ)
B×2×F×T’

Stem Stage(1)
�

Stage(2)
�

Stage(3)
�

+

+

⊕ StageV lV ′(RV3
, ·)

lBCE(1�3
, ·)

lBCE(1�3
, ·)

lBCE(1�3
, ·)

+

l�V

B×17×K×T’

R̂(1)
�

R̂(2)
�

R̂(3)
�

R̂V

(d) Diagram of our proposed 3-stage ONSETS&VELOCITIES full architecture and
training loss. Each Stage�

(i) produces an onset piano roll R̂(i)
� , and successive

stages refine the output via the residual connection (+ preserves shape). The
velocity StageV uses knowledge about onset locations from the final onset
stage, and everything is trained jointly. See Figure 1) for qualitative examples of
X , R̂(3)

� and R̂V . Section II-B presents the loss l�V .

Fig. 2: Our proposed CNN. Rank-4 tensor dimensions
are Batch×Channel×Height×Width. Design princi-
ples, interfaces and loss functions are described in Section II.
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TABLE I: Comparison of top-performing models in terms of specifications (number of parameters for onset+velocity only,
architecture and functionality) and performance (precision, recall, F1-score and MAESTRO version).

MODEL
ONSET+VELOCITY

# PARAMS ARCHITECTURE OFFSET/PEDAL?
ONSET (%) ONSET+VELOCITY (%) MAESTRO

VERSIONP R F1 P R F1

O&F [16] 10M BI-RNN ✓ / ✗ 98.27 92.61 95.32 - - - V1
REGRESSION [11] 12M BI-RNN ✓ / ✓ 98.17 95.35 96.72 - - - V2
TRANSFORMER [21] – TRANSFORMER ✓ / ✗ - - 96.13 - - - V3
O&V (OURS) 3.13M CNN ✗ / ✗ 98.58 95.07 96.78 96.25 92.86 94.50 V3

to bypass the need for elaborate decoding schemes as the
ones discussed in [11]. The masked loss lV ′ is a cross-entropy
variant of the previously mentioned lV , introduced in [16] and
[11], that encourages to predict the right velocity only in the
vicinity of onsets.

All model weights are initialized with the Gaussian-He
distribution [47], and biases with 0, except the CAM channel
atention biases (right before the sigmoid), initialized with 1 to
promote signal flow. We use the Adam optimizer with a decou-
pled weight decay [48], [49] of 3×10-4, trained with random
batches of 5-second segments (batch size 40, ∼14k batches per
epoch) for ∼70K batches. For the learning rate, we start with
a ramp-up from 0 to 0.008 across 500 batches, followed by
cosine annealing with warm restarts [50], using cycles of 1000
batches and decaying by 97.5% after each cycle. BN/SBN
momentum is 95%, dropout 15% and leaky ReLUs have a
slope of 0.1. In l′V , we use λ=10. To compensate that 13� is
sparse, we give positive entries a weight 8 times bigger than
negative entries inside of lBCE(13�, ·). Training speed was
1800 batches per hour on a 2080Ti NVIDIA GPU.

C. Evaluation

Following the same evaluation procedure as O&F [16],
REGRESSION [11] and TRANSFORMER [21], and applying
standard metrics from [51] implemented in the mir_eval
library [52], we report precision (P), recall (R) and F1-score for
the predicted onsets, considered correct if they are within 50ms
of the ground truth. The onset+velocity evaluation, following
O&F [16, 3.1], has an added constraint: the predicted velocity
must also be within 0.1 of the ground truth normalized
between 0 and 1.

Note that the MAESTRO dataset is being actively extended
and curated, presenting 3 versions so far. We report the
respective versions in Table I, noting that versions 2 and 3 are
almost identical, although comparisons across versions should
be taken approximately.

III. EXPERIMENTS AND DISCUSSION

We trained O&V on the MAESTRO v3 training split
without any extensions or augmentations, achieving state-of-
the-art performance in onset detection (see Table I). In the
following we discuss some implications:

a) Temporal resolution: Our results seem to counter
the need for increased temporal resolution expressed in [11]
(which use 8ms), showing that 24ms piano rolls coupled with
our decoder presented in Equation (1) are competitive.

b) Reduced memory footprint: Table I reports model
parameters for the components that are responsible exclu-
sively for onset and frame detection (TRANSFORMER has
∼54M parameters in total, but it transcribes everything jointly
so it cannot be fairly compared). O&V outperforms the best
alternative, REGRESSION, with ∼4 times less parameters.

c) Affordable real-time inference: Bi-recurrent layers
like the ones used in O&F and REGRESSION are unsuited
for real-time processing. TRANSFORMER took ∼380s to tran-
scribe a 120s file on an Intel Xeon CPU (1 core), and ∼20s on
a Tesla-T4 GPU (including offsets) when run on the official
Colab implementation2. O&V took less than 2s to process the
same file on an 8-core Intel i7-11800H CPU. Even accounting
for the number of cores, O&V is approximately one order of
magnitude faster than TRANSFORMER.

d) Conceptual simplicity: In essence, O&V revives the
simplicity from [12] by applying a feedforward CNN to a dis-
criminative task via piano rolls, followed by a simple decoding
heuristic. Its architecture allows to remove onset stages without
retraining, providing a flexible trade-off between runtime and
performance with little added complexity.

e) Latency: The receptive field for our O&V proposed
components is: Stem: 60 frames (1.44s), Stage�

(i): 99
frames (∼2.38s), and StageV: 35 frames (0.84s). This would
theoretically impose a latency of over 9s, which is far from
a responsive system. We informally note that the latency can
be truncated without drastically affecting results (we used a
latency of 4s in a live workshop), and encourage practical
applications. We also note that our focus was on finding a
CNN with affordable inference and competitive performance,
and we did not optimize for low receptive field, which may
be obtainable with minor variations to the architecture (e.g.
reducing the number of consecutive stages or CAMs).

IV. CONCLUSION AND FUTURE WORK

We presented ONSETS&VELOCITIES, a convolutional setup
that achieves real-time capabilities on modest commodity
hardware without compromising performance, and with a sub-
stantially reduced size and temporal resolution. O&V achieves
state-of-the-art performance in PPT note onset detection, and
establishes a good baseline on onset+velocity detection. Future
work could include reducing the receptive field, extensions to
offset and pedal detection, training and evaluation on different
instruments, and analysis of design choices via ablation studies
(e.g. number of stages and temporal resolution).

2https://github.com/magenta/mt3
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