
Uncertainty in Semi-supervised Audio Classification
– A Novel Extension for FixMatch

Sascha Grollmisch
Industrial Media Applications

Fraunhofer IDMT
Ilmenau, Germany

goh@idmt.fraunhofer.de

Estefanı́a Cano
Songquito UG

Erlangen, Germany
estefania.cano@songquito.com

Hanna Lukashevich
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

lkh@idmt.fraunhofer.de

Jakob Abeßer
Semantic Music Technologies

Fraunhofer IDMT
Ilmenau, Germany

abr@idmt.fraunhofer.de

Abstract—Semi-supervised learning (SSL) is a commonly used
technique when annotated data is scarce but unlabeled data is
easily available. In recent years, SSL has seen a large boost
in the computer vision domain and methods such as FixMatch
were successfully adapted to audio classification tasks. However,
there still remains a gap between SSL methods and the fully
supervised baselines, which were trained with all labels available.
In this work, we first investigate the quality of the pseudo-labels,
i. e., generated labels for unlabeled data, for musical instrument
family classification and acoustic scene classification. Based on
these insights, we propose and evaluate a novel extension of
FixMatch that quantifies and considers the uncertainty of the
pseudo-labels. Additionally, we highlight the problematic trade-
off between pseudo-label quality and quantity. Our results show
that Monte-Carlo Dropout combined with temperature scaling
improved the pseudo-label accuracy from 78.4% to 86.7% for
instrument family and from 87.9% to 89.9% for acoustic scene
classification. Even though the accuracy on the test sets improved
from 71.0% to 72.1% and from 69.2% to 70.8%, respectively,
there is still a gap to the fully supervised baseline leaving room
for future work.

Index Terms—semi-supervised learning, deep learning, music
information retrieval, acoustic scene classification

I. INTRODUCTION

Annotated data for classification tasks is often difficult
and expensive to obtain whereas unlabeled data is readily
available or can be acquired at relatively low cost. Semi-
supervised learning (SSL) reduces the amount of required
annotated data for training a model by incorporating unlabeled
data. In recent years, SSL has seen great advances in im-
age classification tasks with algorithms such as ReMixMatch
(RMM) [1], FixMatch (FM) [2], and FlexMatch [3], to name a
few. These methods nearly closed the performance gap to the
fully supervised baseline, that had all annotations available,
using only a fraction of the labeled data. As an example,
FM achieved 95.7% accuracy on CIFAR-10 [4] using 400
examples per class and an only slightly reduced performance
of 94.9% with 25 examples per class. In our previous work
[5], we adapted FM for audio classification and evaluated it
on classification tasks from different audio domains such as
Acoustic Scene Classification (ASC), Music Information Re-
trieval (MIR), and Industrial Sound Analysis (ISA). With few
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labeled examples, FM outperformed models trained supervised
from scratch, the SSL method Mean Teacher [6], and transfer
learning. However, it did not reach the accuracy of the fully
supervised baseline for ASC and MIR when the amount of
labeled data was reduced to 5% or less. Similar findings were
made by Cances et al. [7] for Sound Event Detection (SED)
and Speech Command Recognition (SCR) where RMM and
FM outperformed models trained supervised with 10% of the
labeled data but SSL did not reach the accuracy of the fully
supervised baseline on one of the datasets. In [8], FM and
RMM achieved competitive results in the fields of computer
vision, natural language processing, and audio classification
compared to more recent SSL methods such as FlexMatch.
In their work, the largest gap to the fully supervised results
was assessed for audio classification even though pre-trained
networks were used. This result was mainly attributed to
inputting raw audio instead of spectral images. Following these
results, we focus on FixMatch as a semi-supervised audio
classification approach, and build upon our previous work [5]
to improve SSL for audio classification.

The training procedure for audio classification using FM
as proposed in [5] is shown in Figure 1. The audio files
are transformed into (log) Mel spectrograms patches as input
for a Convolutional Neural Network (CNN). These “spectral
images” are augmented with common image augmentation
techniques such as translation in x/y direction, additive Gaus-
sian noise, and sharpening. For the labeled examples, the
categorical cross-entropy (CCE) loss is calculated as one part
of the loss used to train the CNN. For the unlabeled data, the
model itself iteratively generates the target labels or pseudo-
labels during training time: The unlabeled data in each batch
is weakly augmented, passed through the model and only
those examples with a highest class-wise output prediction
above a pre-defined confidence threshold are binarized to
pseudo-labels. Using this filtering step, we only keep pseudo-
labels that the network is confident about. The same unlabeled
examples are also strongly augmented. The pseudo-labels are
then used as targets to calculate the CCE loss for the unlabeled
data. The final training loss is computed as the unweighted
sum between the labeled loss and the unlabeled loss.

It is clear from the FM procedure that the correctness of
the generated pseudo-labels is of critical importance for the
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Fig. 1: Unlabeled part of the FM training process for time-
frequency representations of audio data in [5]. The model
generates a pseudo-label on a weakly augmented version of
an unlabeled example and uses it as target for a strongly
augmented version.

final performance of the system. Errors can amplify during
the course of training and negatively impact performance [9].
This effect should be limited with the confidence threshold
mechanism in FM. More recent FM variants such as Dash [10]
or FlexMatch [3] tried to improve the confidence threshold-
ing step in FM by applying class-dependent or dynamically
changing threshold values. Still, neural networks can output
wrong pseudo-labels with a high confidence [11]–[14]. We
hypothesize that incorrect pseudo-labels with high confidence
are one reason why FM and its variants fail to achieve
the results of the fully supervised baseline on some of the
investigated datasets.

The contributions of this work are as follows: We first
investigate the quality of the pseudo-labels for one MIR dataset
and one ASC dataset. We then propose and systematically
evaluate a method that quantifies and considers the uncertainty
of pseudo-labels in FM. Lastly, we investigate the impact
of the proposed FM modification regarding the classification
accuracy on the test data.

II. RELATED WORK

FM uses a confidence threshold to filter out pseudo-labels
about which the model is uncertain. However, the output
of the last softmax layer is often erroneously interpreted
as the confidence of a model with respect to the class
decision. This interpretation problem is called deterministic
overconfidence [11]. As a result, not only the correct but also
erroneous class decisions are getting high softmax outputs.
This deterministic overconfidence is large when the data is far
away from the model’s decision boundary. It is also high when
rectified linear units (ReLU) are used in the network [13].

There are multiple solutions to overcome the deterministic
overconfidence. In the temperature scaling approach [12], the
softmax outputs are calibrated post-hoc in order to soften the
output predictions. This is achieved by dividing the output
logits of the neural network by a fixed temperature T as
follows

softmaxTemp(fi) =
exp(fi/T )∑J
j=1 exp(fj/T )

(1)

where J is the total number of classes and ai are the logits
for each class. Temperature scaling mitigates the deterministic
overconfidence when data can be considered in-distribution.

Other approaches approximate the Bayesian inference using
the concepts of aleatoric and epistemic uncertainty. Aleatoric
uncertainty is caused by inherent noise in the data and
epistemic uncertainty is caused by missing knowledge in the
model [15]. In the Monte Carlo (MC)-Dropout approach,
dropout layers are added to the neural network to model
the epistemic uncertainty in an efficient way [11]. During
inference, the dropout layers are still active and the same input
is passed several times through the neural network. Epistemic
uncertainty can also be estimated using deep ensembles of
multiple independently trained neural networks [16].

To measure the uncertainty of the pseudo-labels in SSL,
Rizve et al. [14] proposed the Uncertainty-Aware Pseudo-
Label Selection (UPS) framework. They used only predictions
with low uncertainty to reduce the effect of poor neural
network calibration. Furthermore, they applied temperature
scaling with a temperature of T = 2 combined with MC-
Dropout to compute the uncertainty of predictions from the
output of the temperature-scaled softmax layer over all passes
through the network. One filtering mask only includes pseudo-
labels with an average prediction above 0.7 and a second mask
only the ones with a standard deviation below 0.05. In each
epoch, the pseudo labels to be included are obtained from
the intersection of both masks. In contrast to FM, UPS uses
two neural networks, the pseudo-labels are generated once per
epoch anew, and the neural networks are re-initialized after
each pseudo-labeling step. The reported results for UPS were
below the ones from RMM.

III. DATASETS

Building up upon our previous work [5], we focus on two
datasets from two different audio domains. The first dataset is
the TUT Urban Acoustic Scenes 2017 (TUT2017) for acoustic
scene classification (ASC) with its corresponding training [17]
and test splits [18]. Each of the ten seconds long audio
clips was recorded in one of 15 acoustic scenes including
grocery store, park, library, etc. The recording locations differ
between training and test set. The fully supervised baseline
achieved 77.2% file-wise accuracy while FM obtained 69.2%
with 5% of the labeled data1. The second dataset is the NSynth
dataset [19] for instrument family recognition with instruments
belonging to 11 instrument families such as brass, strings, and
vocals. The audio snippets are four seconds long and include
synthesized instrument notes. The training and test sets cover
different instruments from the same families. With 1% of the
labeled data, the classification accuracy of FM dropped from
77.1% (fully supervised baseline) to 71.0%. Both datasets
resulted in comparable performance gaps between FM and
the fully supervised baselines. Therefore, we use these datasets

1In [5], a file-wise accuracy of 61.2% was reported. This was due to an
error which excluded three quarters of the unlabeled data (only the first part
of each recording was used). We report the corrected results here.
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Fig. 2: Pseudo-label quality and quantity for each training
epoch for FM and FMUC for both investigated datasets.

throughout this work. For details on the state of the art, transfer
learning, and few-shot techniques with these datasets see [5].

To enable comparability with our previous work [5], we
use the same processing pipeline: From the audio recordings,
(log) Mel spectrograms are extracted and several time frames
form the spectral images. The extraction parameters for each
dataset are detailed in [5]. The spectral images are normalized
to zero mean and unit variance for each Mel band before being
input to the CNN, namely the CNN420. It has a ResNet-based
[20] architecture with 420k trainable parameters. Each batch
consists of 32 labeled and 224 unlabeled examples. We use
the Adam optimizer with a learning rate of 10−3 and a fixed
number of 500 iterations per epoch. The CNN420 is trained
for 100 epochs on TUT2017 and for 200 epochs on NSynth
since the dataset is larger.

IV. INVESTIGATING PSEUDO-LABEL QUALITY

We first measure the quality of the pseudo-labels to prove
the hypothesis that they are one of the reasons for the gap
to the fully supervised results. We define quality as the
accuracy of the filtered and binarized pseudo-labels above the
confidence threshold. We can compute the accuracy of the
pseudo-labels since we know the true labels while artificially
reducing the amount of labeled examples in our experiments.

The quality of the pseudo-labels in each training epoch is
shown in Figure 2a. For both datasets, it starts at around 75%,
meaning that one in every four pseudo-labels is wrong. Over
the course of the training, the quality converges at around
88% for TUT2017 and 78% for NSynth. Interestingly, FM can
recover from mistakes that were made in early epochs and
steadily improve the quality to an upper ceiling.

To get a better understanding of the type of errors that are
made when generating the pseudo-labels, Figure 3 illustrates
the confusion matrix for TUT2017 after 20 epochs of training.
Interestingly, most of the pseudo-label errors make sense:
forest path is confused 20.9% of the times with park, grocery
store is confused 26.1% of the times with cafe/restaurant, and
train is confused 25.2% of the times with bus. The model did
not make arbitrary but rather understandable mistakes which
indicate that the basic concept of the task is learned.Still,
there is potential for improving the pseudo-label quality, and
therefore the FM performance.

Fig. 3: Confusion matrix of the pseudo-labels after 20 epochs
on TUT2017.

V. INCLUDING UNCERTAINTY TO PSEUDO-LABEL
SELECTION

A. Method

We propose to integrate uncertainty measurements based
on MC-Dropout and temperature scaling into FM in order
to improve the selection and quality of the pseudo-labels.
Since we focus on a lightweight approach, we did not further
consider deep ensembles as they require to train several
models. The main metric for this experiment is the quality
of the selected pseudo-labels. As a second metric, we report
the quantity in % where 100% means that all unlabeled data
in each batch is used. A perfect pseudo-label quality is not
the best choice when only very few unlabeled examples are
considered and the benefit of SSL can be actually neglected.

We illustrate the proposed FM approach with uncertainty
measures as FixMatch-Uncertainty (FMUC) in Figure 4. Every
weakly augmented training example is repeated N times per
batch. The weakly augmented examples are passed through
the neural network with MC-Dropout. The mean and standard
deviations of the temperature scaled softmax output are calcu-
lated over N repetitions of each weakly augmented example.
The standard deviation for each example is subtracted from
its mean prediction and only examples above the pre-defined
threshold are used. We propose this combination of both values
to avoid an additional threshold which needs to be optimized.
The filtered and binarized pseudo-labels are used as targets for
the strongly augmented version as in FM.

In order to add MC-Dropout to a CNN, dropout layers
are required. The CNN420 already contains dropout layers
for regularization. The architecture is ResNet-based [20] with
modifications proposed by Chen et al. in [21]. Each ResNet-
block starts with ReLU activation, followed by Batch Nor-
malization and dropout of 0.1 before being passed to the
convolutional layer. These dropout layers allow us to include
MC-Dropout without changing the model and affecting its
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Fig. 4: Extended training process of the unlabeled data part
for FMUC. The weakly augmented unlabeled examples are
passed several times through the model with dropout enabled.
The mean and standard deviation of the temperature scaled
predictions are binarized to pseudo-labels for the strongly
augmented version when the threshold is exceeded.

overall performance. In this experiment, the repetitions for
MC-Dropout are set to 5. We were not able to investigate
larger numbers of repetitions due to memory restrictions.

The temperature is set to the suggested value of 2 as in
UPS. The influence of the temperature scaling is evaluated
separately by changing the temperature value to 1 which
turns off the scaling and 4 which softens the predictions
further. Another way to increase the accuracy of the pseudo-
labels in FM could be raising the confidence threshold, e. g.,
from 0.95 to 0.99. Even though this performed worse in the
original publication [2], we add it for comparison. Based on
preliminary experiments, the default confidence threshold was
lowered for FMUC from 0.95 to 0.9 due to the stronger
filtering introduced with the uncertainty measures. However,
a threshold of 0.95 is additionally investigated. Furthermore,
we change FMUC to using two different thresholds for mean
and standard deviation of the confidence outputs similar to
UPS to see if the proposed simplified version using only
one combined threshold leads to comparable results. Here, we
apply the suggested thresholds from [14] of 0.7 for mean and
0.05 for standard deviation.

B. Results

The results of FM and FMUC with different parameters are
shown in Table I. For both datasets, over 90% of unlabeled
data is included in FM with a pseudo-label accuracy of 78.4%
for NSynth and 87.9% for TUT2017. Raising the confidence
threshold of FM to 0.99 slightly increases the pseudo-label
quality while reducing the quantity by a larger margin. This
demonstrates the quality-quantity trade-off in SSL.

FMUC improves the quality by 8.3 percentage points for
NSynth and by 2 percentage points TUT2017 showing the
benefit of uncertainty measurements in pseudo-label selection.
Increasing the confidence threshold for FMUC to 0.95 only
improves the pseudo-label quality on TUT2017 while reducing
the quantity for both datasets. Therefore, the threshold of 0.9
seems a better choice and is used in further experiments.
Using two separate thresholds as in UPS leads to similar
results compared to FMUC on TUT2017 but lowers the quality

TABLE I: Pseudo-label quality and quantity in % for FM
and different FMUC versions including different confidence
thresholds (thresh.), two separate thresholds as in UPS (FMUC
two thresh.), temperature scaling of 4 (temp. 4) or disabled
(w/o temp.), and MC-Dropout disabled (w/o MC-Dr.).

Method NSynth
quality

NSynth
quantity

TUT2017
quality

TUT2017
quantity

FM 78.4 91.1 87.9 97.3
FM thresh. 0.99 80.7 75.8 89.9 90.8
FMUC 86.7 78.1 89.9 88.7
FMUC thresh. 0.95 85.1 69.2 91.9 72.8
FMUC two thresh. 84.1 77.5 90.4 87.9
FMUC w/o temp. 77.2 90.1 89.3 94.1
FMUC w. temp. 4 92.3 34.1 94.0 38.6
FMUC w/o MC-Dr. 82.6 78.8 89.8 89.2

and quantity on NSynth. The proposed combined threshold of
FMUC removes one hyperparameter without sacrificing any
performance and is therefore a useful simplification. Temper-
ature scaling is very effective for increasing the pseudo-label
quality as can be seen at “FMUC w/o temp.” and “FMUC
w. temp. 4”. This indirectly confirms the overconfidence of
the neural network since many incorrect pseudo-labels with
a high confidence are excluded thanks to temperature scaling.
The highest pseudo-label quality can be obtained by setting the
temperature to 4. At the same time, the pseudo-label quantity
dropped below 40% for both datasets. Therefore, the number
of epochs needs to be increased too much for being feasible in
this study. Furthermore, we kept a temperature value of 2 as it
is not guaranteed that the quantity is not converging to lower
values. Disabling MC-Dropout (“FMUC w/o MC-Dr”) lowers
only the pseudo-label quantity on NSynth. For TUT2017 the
influence of MC-Dropout is negligible which might be caused
by using only 5 repetitions.

For deeper insights into the effect of the added uncertainty,
Figure 2 shows how the pseudo-label quality and quantity for
FM and FMUC progresses over the training duration. The
improvement of the quality using the proposed uncertainty
approach is clearly visible, see Figure 2a. In early epochs, the
improved filtering leads to a constantly higher pseudo-label
accuracy. Therefore, FMUC is a valid strategy for countering
badly calibrated networks in the beginning of the training.
On the downside, FMUC is still bound to the quality-quantity
trade-off requiring longer training times, see Figure 2b.

VI. FULL EVALUATION

Even though the quality of the pseudo-labels improved,
FMUC needs to be compared to FM and the fully supervised
baseline regarding the file-wise accuracy on the test set. All ex-
periments are repeated three times to account for randomness
in the CNN initialization and data selection when reducing
the amount of labeled data. The number of training epochs
is doubled for both datasets since the amount of included
unlabeled data did not fully converge. The default FM results
are recalculated with the current number of iterations and
epochs. Additionally, the file-wise accuracy is calculated on
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TABLE II: Mean file-wise accuracy and standard deviation of
FM and FMUC in % on the separated test sets and left-out
unlabeled data plus the results of the fully supervised baseline.

Dataset FMUC FM Fully supervised
TUT2017 test 70.8±0.4 69.2±0.3 77.2±1.2

TUT2017 unlabeled 88.4±0.6 84.9±0.7 -
NSynth test 72.1±0.7 71.0±1.9 77.1±0.2

NSynth unlabeled 76.5±1.1 74.0±1.9 -

the unlabeled data to assess the performance on data with the
exact distribution as the labeled training data.

As shown in Table II, the accuracy on the test data improved
by 1.6 percentage points for TUT2017 and 1.1 percentage
points for NSynth with FMUC. It reduces the gap to the fully
supervised baseline that has all labels available. However, this
improvement is less than the gain in pseudo-label quality.
The difference can be explained by overfitting to the training
domain (exact instruments and recordings locations) for the
investigated datasets. This is evident by looking at the accuracy
on the unlabeled data which increased by 2.5 to 3.5 percentage
points.

VII. CONCLUSION

In this work, we first investigated the pseudo-label quality
of FixMatch (FM) for audio classification. Instrument family
recognition and acoustic scene classification were selected as
tasks to cover a wide variety of audio content. We demon-
strated that the pseudo-label quality is not perfect, leading
to wrong targets for Semi-supervised Learning (SSL). These
errors are one possible reason for the gap between SSL and the
fully supervised baseline with all labels available. To improve
the quality of the pseudo-labels, we propose and evaluate a
novel extension of FM which combines temperature scaling
and MC-Dropout to measure the uncertainty of the pseudo-
labels, called FixMatch-Uncertainty (FMUC). It increases the
pseudo-label quality while the quantity is not lowered by the
same amount. Temperature scaling was the most important
component to filter out incorrect pseudo-labels while the
positive impact of MC-Dropout was dataset-dependent.

FMUC reduces the gap to the fully supervised baseline
for both datasets and the proposed changes can be integrated
into other FM variants with little effort. On the downside,
FMUC cannot completely overcome the quality-quantity trade-
off, meaning that longer training times are required for a
performance gain. While the accuracy of the pseudo-labels
already increased in the early stages of the training, the final
performance on the test data was improved less. One reason
is the overfitting to the training domain which needs to be
approached differently. Another reason is the imperfect quality
of the pseudo-labels with confusions between semantically
close classes. Pre-training the neural networks or active learn-
ing strategies with human supervision could be promising
directions for future work.

Nevertheless, the proposed FM changes may have a stronger
impact for out-of-domain problems. The current experimental

setup of artificially reducing the number of labeled data
represents an ideal version of SSL. In real-world use cases
it is likely that not all unlabeled data will contain the de-
sired classes or be from the same distribution as the labeled
examples. Here, measuring the uncertainty already proved its
suitability [22] and might therefore be more valuable for SSL
in real-world applications.
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