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Abstract—Using embeddings pre-trained on large datasets
as input representations is a popular approach for classifying
audio data in case only a few training samples are available.
However, for anomalous sound detection pre-trained embeddings
usually perform worse than directly training a model because
subtle changes indicating anomalous data are not captured
sufficiently well. In this paper, the potential of using pre-trained
embeddings for detecting anomalous sounds with limited training
data is investigated. In experiments conducted on datasets for
anomalous sound detection with domain shifts and few-shot open-
set classification, it is shown that with increasing openness directly
training a model on the original data leads to better performance
than using pre-trained embbedings as input. Regardless of the
input representation, the presented system achieves a new state-
of-the-art performance for few-shot open-set classification in all
pre-defined openness settings and is made publicly available.

Index Terms—anomalous sound detection, domain generaliza-
tion, open-set classification, few-shot learning, transfer learning,
representation learning, machine listening

I. INTRODUCTION

Semi-supervised anomalous sound detection (ASD) is the
task of identifying anomalous sounds while only having access
to normal data when training a system. There are several
applications for ASD such as machine condition monitor-
ing for predictive maintenance. Many recent developments
have been promoted by the annual DCASE challenge [1]–
[3]. For acoustic open-set classification (OSC) problems [4]–
[6], normal and anomalous samples have to be distinguished
but normal samples also have to be correctly classified as
belonging to one of several known classes. Both tasks, ASD
and OSC, are especially challenging when only few training
samples are available. Examples are few-shot learning [7]
for OSC with only k training samples per class (k-shot
classification) [5] and ASD under domain shifts [8] between
an acoustic source domain with many training samples and a
target domain with only very few training samples [2], [3].

One possibility to overcome the difficulties imposed by
limited training data is to use embeddings extracted with a
neural network pre-trained on other very large datasets [9].
There are several ASD systems [10], [11] based on pre-trained
audio embeddings and studies comparing these embeddings
for ASD [12] or audio classification tasks [13] in settings
with sufficient training data. However, all these systems do
not achieve the same state-of-the-art performance as systems
directly trained on the data. For acoustic open-set classifica-
tion, the systems presented in [5], [14] use pre-trained audio

embeddings. Another approach is to use image embeddings
for ASD [15] or apply them for zero-shot audio classification
[16]. In [17], it is shown that combining multiple hidden
representations of pre-trained neural networks improves the
performance. Hence, there is a substantial interest in using pre-
trained embeddings for classifying audio data. Yet, evaluations
in ASD settings with limited training data, which intuitively
favor using pre-trained embeddings, are still missing. The goal
of this work is to fill this knowledge gap.

The contributions of this work are the following. First and
foremost, the ASD performance of using pre-trained audio
embeddings, namely VGGish [18], openL3 [19], PANN [20]
and Kumar [21] embeddings, are evaluated on the DCASE
2022 ASD dataset with domain shifts [3] and a few-shot OSC
dataset [5]. It is shown that only in closed-set classification
or with very few unknown classes these embeddings perform
better than a model directly trained on the data whereas for
more unknown classes the contrary is true even if only very
few training samples are available. In conclusion, directly
training a model on the data is a better approach for detect-
ing anomalous or unknown samples. Last but not least, the
proposed system1 achieves a new state-of-the-art performance
on the few-shot OSC dataset for any of the investigated input
representations.

II. PRE-TRAINED AUDIO EMBEDDINGS

For the experimental evaluations in this paper, four different
audio embeddings pre-trained on large datasets have been
used. These embeddings will now be briefly reviewed.

VGGish [18] is a modified version of the VGG network
[22] with a similar architecture. The network is pre-trained
in a supervised manner on a prelimary version of YouTube-
8M [23], which consists of 2.6 billion audio segments from
Youtube videos belonging to a total of 3628 classes. The
resulting embeddings have a feature dimension of 128 with
an additional time dimension resulting from a sliding window
of 960 ms with no overlap applied to the waveforms.

OpenL3 [19] is a network trained to extract Look, Listen,
and Learn (L3) embbedings [24], [25]. There are multiple
versions of the network: One is pre-trained on a music and the
other on an environmental subset of AudioSet [26] consisting

1An open-source implementation of the system is available at: https:
//github.com/wilkinghoff/few-shot-open-set-eusipco2023
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Fig. 1. Structure of the audio embedding model for direct training [28].

of 296K and 195K Youtube videos, respectively. The network
is trained in a self-supervised manner to check whether a video
frame and an audio clip with a length of one second do or do
not belong together using an audio and a video subnetwork.
After training, only the audio subnetwork is needed to extract
embeddings from audio data. The resulting embeddings have
a feature dimension of 512 with an additional time dimension
resulting from a sliding window of one second with a hop size
of 0.1 seconds applied to the waveforms.

PANN [20] is a combination of a one-dimensional sub-
network applied to waveforms (Wavegram-CNN) and a two-
dimensional subnetwork applied to log-mel spectrograms.
Both output representations are concatenated and further pro-
cessed with another two-dimensional subnetwork. The entire
network is pre-trained in a supervised manner on AudioSet
[26] using a total of 1, 934, 187 audio clips from Youtube
videos belonging to 527 sound classes. As the difference in
performance between including and not including Wavegram-
CNN is relatively small, we only used the subnetwork with
a VGG-like architecture pre-trained on log-mel spectrograms
(CNN14). The resulting embeddings have a feature dimension
of 2048 with no time dimension because of a global temporal
pooling operation inside the network.

Kumar embeddings [21] are extracted using a CNN with
a VGG-style architecture [22]. The network is pre-trained
in a supervised manner on the balanced subset of AudioSet
[26] that consists of around 22, 000 audio clips from Youtube
videos belonging to 527 sound classes. The resulting embed-
dings have a feature dimension of 1024 and no time dimension
because of a global temporal pooling operation inside the
network.

III. SYSTEM DESCRIPTIONS

Different input representations and datasets with different
tasks also require different models for further processing.
These models will be described in the following subsections.
All models are implemented using Tensorflow [27].

A. Anomalous sound detection systems

When directly training a model on the data, i.e. not us-
ing pre-trained embeddings, the state-of-the-art ASD system
described in [28] is used. This system utilizes two different
submodels that use magnitude spectrograms and magnitude

spectra as input representations and are jointly trained to
learn embeddings by discriminating among known classes
using the sub-cluster AdaCos (scAdaCos) loss [29] with 16
sub-clusters as depicted in Fig. 1. For data augmentation,
mixup [30] with a mixing coefficient drawn from a uniform
distribution is used. The model is trained for 10 epochs
using a batch size of 64 via adam [31]. After training the
model, disciminative embeddings are extracted and compared
to embeddings belonging to normal training data using cosine
similarity (CS). For the source domain, k-means with 16 mean
vectors is applied to obtain these normal embeddings and for
the target domain, which consists of much fewer samples than
the source domain, the embeddings belonging to the training
samples themselves are used. Throughout the network, no bias
terms and no trainable cluster centers are used as this has been
shown to improve the ASD performance. Additional details
about the system can be found in [28].

When using pre-trained audio embeddings as input repre-
sentations, the classification model of the system is replaced
with a shallow neural network for transfer learning, whose
architecture is very similar to the ones used in [5], [13],
[19]. More concretely, the network architecture consists of
three hidden layers with dimensions of 512, 128 and 128.
Prior to all other operations, all pre-trained embeddings are
standardized by using batch normalization as this significantly
improves the performance [19]. For the first two hidden layers
ReLU is used as an activation function and batch normalization
[32] is applied. The last layer does not have an activation
function because it serves as the embedding layer. Prior to the
last layer dropout [33] with a probability of 50% is applied.
Furthermore, mixup [30] with a mixing coefficient drawn from
a uniform distribution is applied to the input representations.
The network is trained for 100 epochs using a batchsize of 64
by minimizing the scAdaCos loss [29] with 16 sub-clusters
using adam [31]. Again, no bias terms or trainable cluster
centers are used throughout the network. For the openL3
embeddings, the network pre-trained on the environmental
subset has been used.

B. Few-shot open-set classification systems

For OSC, the same systems as used for ASD with only
minor modifications are used. This is reasonable because the
auxiliary task for training the ASD system is to discriminate
among the known classes, which, in addition to detecting
anomalies, is exactly the problem to be solved in OSC. All
following modifications are used for both models, the model
directly trained on the data and the model using pre-trained
embeddings as input representations. One modification is using
a single sub-cluster for each class because in a few-shot
setting only very few training samples are available for each
class. Another modification is using a decision threshold for
identifying anomalous samples because a threshold-dependent
evaluation metric is used for the experiments. A decision is
derived as follows. First, the CSs between the embeddings
of a test sample and the embeddings of all training samples
are computed. Then, the test sample is considered anomalous
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if the most similar training sample is one of the known
unknown samples or if the highest CS is below a fixed decision
threshold. This decision threshold is set to 0.6, 0.65 and 0.75
for an openness of 0 (low), 0.04 (medium) and 0.09 (high),
respectively. Following [34], openness is defined as

1−
√

2 · Ctrain

Ctrain + Ctest
∈ [0, 1] (1)

where Ctrain, Ctest ∈ N denote the total number of classes
used for training and testing, respectively. Higher openness
values indicate less known or more unknown classes and a
value of 0 corresponds to a closed-set classification prob-
lem. Furthermore, each model is trained using 100 times
the number of shots available for training as the number of
epochs and a batch size equal to eight times the number of
shots. Using these adaptive hyperparameter settings depending
on the size of the training dataset results in a more stable
decision threshold across all openness and few-shot settings
and thus improves performance. For the openL3 embeddings,
the network pre-trained on the music subset has been used.

IV. EXPERIMENTAL RESULTS

A. Datasets

For the experimental evaluations in this paper, two different
datasets have been used. The first dataset is the DCASE
2022 ASD dataset [3] for domain generalization in machine
condition monitoring. The dataset consists of recordings of
machines with real factory background noise each having a
length of ten seconds and a sampling rate of 16 kHz, and is
split into a training set, a validation set and an evaluation set.
The training dataset consists of only normal recordings from
seven different machine types: “fan”, “gearbox”, “bearing”,
“slide rail”, “valve”, “ToyCar”, and “ToyTrain”. For each
machine type, there are six different sections with 990 normal
training data samples from the source domain and 10 samples
from the target domain with a specific, unknown domain shift
meaning that some acoustical characteristics differ for both
domains. In addition to these information, there are some
attribute information for each training sample that describe
the state of machines or noise. Three of the sections belong to
the validation set and the other three belong to the evaluation
set, each having 100 normal and 100 anomalous samples
belonging to the source domain and 100 normal and 100
anomalous samples belonging to the target domain. For none
of these test samples, additional information such as attribute
information or the domain they belong to are provided. The
performance metrics for this dataset are the area under the
receiver operating characteristic curve (AUC) and the partial
AUC (pAUC) [35], which is the AUC for a low false positive
rate ranging from 0 to 0.1 in this case. Both of these metrics
are evaluated for each combination of machine type and
section regardless of the domain, and the harmonic mean of
all derived performance metrics is used as the final result.

The second dataset is a few-shot OSC dataset [5] for acous-
tic alarm detection in domestic environments. The dataset
consists of 24 different alarm sounds and 10 unknown sounds,

TABLE I
HARMONIC MEANS OF AUCS OBTAINED WITH DIFFERENT WAYS TO

CONTRACT THE TEMPORAL DIMENSION OF MULTIPLE EMBEDDINGS. FOR
PANN AND KUMAR EMBEDDINGS, A SLIDING WINDOW OF 960 MS HAS

BEEN APPLIED TO OBTAIN A TIME DIMENSION.

dataset embeddings mean of embeddings mean of scores nativebefore training during training after training

dev set VGGish 65.78± 0.3765.78± 0.3765.78± 0.37 64.98± 0.25 58.47± 0.58 59.27± 0.58 not available
dev set OpenL3 70.94± 1.3670.94± 1.3670.94± 1.36 70.83± 0.93 59.85± 0.49 62.67± 1.36 not available
dev set PANN 64.80± 0.25 66.30± 0.5566.30± 0.5566.30± 0.55 59.66± 0.32 60.47± 0.17 64.21± 0.17
dev set Kumar 66.04± 0.7666.04± 0.7666.04± 0.76 65.85± 0.83 58.94± 1.00 62.22± 0.98 60.97± 0.52

eval set VGGish 64.69± 0.3464.69± 0.3464.69± 0.34 63.91± 0.73 58.30± 0.98 59.78± 0.53 not available
eval set OpenL3 69.06± 0.4269.06± 0.4269.06± 0.42 68.70± 0.94 62.44± 0.46 65.02± 1.04 not available
eval set PANN 63.55± 0.27 65.29± 0.3965.29± 0.3965.29± 0.39 58.57± 1.07 60.34± 0.62 63.33± 0.36
eval set Kumar 63.56± 0.59 64.05± 0.2764.05± 0.2764.05± 0.27 56.95± 0.86 61.04± 0.44 60.13± 0.24

namely “car horn”, “clapping”, “cough”, “door slam”, “en-
gine”, “keyboard tapping”, “music”, “pots and pans”, “steps”
and “water falling”. For each of these 34 sound classes, there
are 40 different samples with a duration of four seconds and
a sampling rate of 16 kHz. There are three different openness
[34] settings (“low”, “medium” and “high” where training
samples are provided for ten, five or none of the unknown
classes, thus corresponding to an openness of 0, 0.04 and 0.09,
respectively) and three different numbers of shots (one, two or
four) to be used when training the OSC system. For evaluation,
the dataset is divided into a different number of validation
folds, depending on the number of shots to be used, by using
cross-validation. When using one, two or four shots, 40, 20
or 10 validation folds are used, respectively. The performance
metric for this dataset is the weighted accuracy with a weight
of 0.5, which is the mean of the multiclass accuracy for
the known classes and the accuracy for the unknown classes
considering only the labels “known” and “unknown”.

Each experiment conducted in this paper is repeated five
times and the arithmetic mean and standard deviation are
determined as results. Highest values in each row of the tables
containing the results are highlighted in bold letters.

B. Anomaly detection in domain-shifted conditions

Some embedding models utilize a sliding window for audio
data of arbitrary length and thus consist of multiple em-
beddings, one for each window position. Therefore, multiple
ways of combining pre-trained embeddings belonging to a
single recording among the temporal axis are compared first.
The results are shown in Tab. I. In contrast to the results
obtained in [13], fusing the frame-wise embeddings before
or during training leads to significantly better results than
fusing the results after training when detecting anomalous
data. Furthermore, the fact that using a sliding window for
Kumar and PANN embeddings to artificially produce a time
dimension improves the performance, shows that temporal
structure of the original data needed to detect anomalies is
not captured sufficiently well in the pre-trained embeddings.

Next, the following backends for using pre-trained em-
beddings as input representations are compared: 1) length
normalization (LN) and a Gaussian mixture model (GMM),
2) principal component analysis (PCA), LN and a GMM, 3)
linear discriminant analysis (LDA), LN and a GMM, 4) a deep
neural network (DNN) with categorical cross-entropy (CXE),
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LN and a GMM, 5) a DNN with scAdaCos, LN and a GMM,
and 6) a DNN with scAdaCos and cosine distance (CD). As
shown in Tab II, for both dataset splits and all embedding
types, using a shallow classifier as done in [5], [13], [19]
significantly improves the performance. Moreover, using the
scAdaCos loss function with CS performs best.

Last but not least, the results obtained with pre-trained em-
beddings are compared to directly training a model on the data
as done in [28]. The results can be found in Tab. III. It can be
seen that the directly trained model significantly outperforms
the shallow classifiers using pre-trained audio embeddings.
The most probable reason for this is that the pre-trained
embeddings are not designed to and thus do not preserve subtle
differences between normal and anomalous samples present in
the original data. Another reason is that the recordings are very
noisy, which is problematic for the embeddings that have not
been exposed to the same noise conditions when being trained
on the large datasets (see also [13]). A second observation to
be made is that openL3 embeddings perform better than all
other pre-trained embeddings, which all have a very similar
performance. The most likely reason for this is that these are
the only embeddings that are pre-trained in a self-supervised
rather than a supervised manner. This is also consistent with
the findings in [13].

C. Few-shot open-set classification

The experimental results obtained on the few-shot open-set
classification dataset can be found in Tab. IV. The first obser-
vation to be made is that regardless of the system, the more
shots are available for training and the lower the openness,
the higher the mean performance and the smaller the variance
gets. This is to be expected because more meaningful training
data should always improve the results especially in settings
with limited training data. Second, for all openness settings
and number of shots all proposed systems outperform both
baseline systems presented in [5] by a large margin and thus
achieve a new state-of-the-art performance. However, there
is a huge difference in performance between different input
representations. On average, VGGish embeddings perform
worst followed by PANN, OpenL3, Kumar and directly using
the data. But interestingly, the best performing input repre-
sentations have different strengths and weaknesses. OpenL3
embeddings perform best for low openness settings, which
is in fact a closed-set classification task. Again, the reason
could be that they are obtained by training in a self-supervised
rather than a supervised manner. Directly using the data for
training performs best in middle or high openness settings,
which in contrast to the low openness setting include a semi-
supervised ASD subtask. Kumar embeddings have a much
higher performance than the system not using any embeddings
in a high openness setting when using a single shot per class
but perform worse in all other cases. One possible explanation
could be the high variance for all performances in this training
setting. A last observation to be made is that using pre-trained
embeddings tends to be less severely effected when less shots
are available for training than when directly using the data to

train the system, which seems reasonable because this is the
point of using pre-trained embeddings.

V. CONCLUSIONS

In this work, using pre-trained embeddings for ASD with
limited training data has been investigated. In several exper-
iments conducted on the DCASE 2022 ASD dataset and a
recently published few-shot OSC dataset, it has been shown
that directly training a model leads to better ASD performance
than training a shallow classifier with pre-trained audio em-
beddings. On the OSC dataset, this effect was only evident
for middle and high openness settings and the performance
gap was not as great as for the ASD dataset. The most likely
explanation is that the ASD dataset is very noisy for which
pre-trained audio embeddings are known to perform worse
whereas the OSC dataset is clean. Moreover, although there
are only a few samples for each target domain, there are
many training samples belonging to the source domains of the
ASD dataset, which seem to provide enough information to
also learn meaningful representations of the data in the target
domains. The proposed system substantially improves upon
the baseline systems of the OSC dataset thus achieves a new
state-of-the-art performance and is made publicly available.
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