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Abstract—This paper provides a baseline system for First-shot-
compliant unsupervised anomaly detection (ASD) for machine
condition monitoring. First-shot ASD does not allow systems
to do machine-type dependent hyperparameter tuning or tool
ensembling based on the performance metric calculated with
the grand truth. To show benchmark performance for First-shot
ASD, this paper proposes an anomaly sound detection system
that works on the domain generalization task in the Detection
and Classification of Acoustic Scenes and Events (DCASE) 2022
Challenge Task 2: “Unsupervised Anomalous Sound Detection for
Machine Condition Monitoring Applying Domain Generalization
Technique” while complying with the First-shot requirements in-
troduced in the DCASE 2023 Challenge Task 2 (DCASE2023T2).
A simple autoencoder-based implementation combined with a
selective Mahalanobis metric is implemented as a baseline system.
The performance evaluation is conducted to set the target
benchmark for the forthcoming DCASE2023T2. The source code
of the baseline system has been made available on GitHub.

Index Terms—first-shot anomaly sound detection, domain
generalization, machine condition monitoring

I. INTRODUCTION

This paper provides a baseline system for First-shot-
compliant unsupervised anomaly sound detection (ASD) for
machine condition monitoring.

Automatic machine condition monitoring with deep learning
techniques for predictive maintenance is a crucial application
in Industry 2.0/4.0. In the Detection and Classification of
Acoustic Scenes and Events (DCASE) Challenge, unsuper-
vised anomalous sound detection tasks are held [1], [2],
[3]. However, most winning systems have utilized techniques
specific to the challenge task setting. In the task setting,
many sound samples of similar but different machine instances
are available as different sections of data for training. Some
systems have used these different sections of data as pseudo
anomaly data samples. Besides, most of the winning systems
have relied on machine-type dependent hyperparameter tuning
and tool ensembling based on the performance observation
with the given anomaly samples for performance assessment.
These solutions are not always applicable to the industry’s
realistic application scenarios.

Since no restriction was specified in the task rule of the
DCASE 2022 Challenge Task 2: Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring Applying

Domain Generalization Techniques (DCASE2022T2), all of
the top five winning systems [4], [5], [6], [7], [8] utilized
techniques that made use of machine-type dependent hy-
perparameter tuning and tool ensembling for each machine
type. Those systems were fine-tuned with oracle performance
metrics, such as the AUC score calculated using the normal
and anomaly samples provided for performance assessment.
Therefore, the information from the anomaly samples had been
leaked into the system.

Considering the above, the DCASE Challenge 2023 Task 2:
First-shot Unsupervised Anomalous Sound Detection for Ma-
chine Condition Monitoring (DCASE2023T2) will introduce
a First-shot requirement into the anomalous sound detection
task. The First-shot ASD task does not allow systems to do
any hyperparameter tuning referencing the performance met-
rics calculated with the grand truth, especially with anomaly
samples provided for evaluating systems.

To show benchmark performance for the First-shot ASD,
this paper provides an anomaly sound detection system
that works on the domain generalization task in the
DCASE2022T2 [3] while complying with the First-shot re-
quirements newly introduced in the DCASE2023T2.

The DCASE2022T2 was for Domain Generalization. How-
ever, it can be interpreted as a highly data-unbalanced training
task. The DCASE2022T2 Domain Generalization task is a
task that requires an efficient training scheme for unsupervised
anomaly detection with highly unbalanced training data (990
normal samples from the source domain and only 10 samples
from the target domain are given for training) and that no
domain label be given for testing target samples.

This paper proposes a simple implementation of
the Mahalanobis metric as the baseline system for
the forthcoming DCASE2023T2 Challenge. This
strategy is a tiny subset of what has been applied
in Liu CQUPT task2 4 [4] which was the first-place
winner of the DCASE2022T2. The source code of the
proposed baseline system will be made available on GitHub
(https://github.com/nttcslab/dcase2023 task2 baseline ae) [9].

In complying with the First-shot requirement, the system is
expected to perform similarly well on any real data to be seen
in the industry.
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II. FIRST-SHOT ANOMALY DETECTION TASK

A. First-shot unsupervised ASD task

Several efficient techniques were proposed in the previous
DCASE ASD challenges for machine condition monitoring
held in 2020, 2021, and 2022; some of the techniques made use
of data from different section as anomaly samples. Besides,
some of the techniques relied on machine-type dependent
hyperparameter tuning and tool ensembling based on the
performance observation with the given anomaly samples.

In general, it is hard to collect enough data sample vari-
ations from various machine instances and enough anomaly
samples in real-world applications. Therefore, those solutions
are unrealistic in such cases.

To encourage the challenge participants to provide truly
useful technologies as real-world solutions, the First-shot
requirement has been newly introduced for the forthcoming
DCASE2023T2 [10].

The First-shot ASD is characterized as follows:
• No use of data from different sections (different machine

instances)
• No hyperparameter tuning applied for dedicated machine

type
• No tool-ensemble applied for dedicated machine type
Instead of having statements describing the rule, the require-

ments are implicitly implemented in the task conditions so that
compliant solutions will be naturally forced. For example, only
a single section per each machine type is available; therefore,
no classification technique is applicable. In addition, Machine
types provided with the Evaluation datasets (to rank the sys-
tems) are completely different from the given machine types
for the Development dataset; therefore, no hyperparameter
tuning nor ensemble tool tuning by checking the grandtruth
is possible.

B. Domain generalization as a data unbalance task

The target task to solve in this paper is the DCASE2022T2:
Domain Generalization task [11], [12], [3] but with the task
additionally restricted by the First-shot requirement.

The Additional training and Evaluation datasets for the
DCASE2022T2 evaluation were used. As shown in Fig. 1,
there are seven machine types; ToyCar, ToyTrain, Fan, Gear-
box, Bearing, Slide rail (Slider), and Bearing. Each machine
type has three sections reflecting the different operating condi-
tions of the machines. Each section has source and target do-
mains representing domain shift conditions. Labels indicating
source/target domains are given only for training. No domain
label is given for testing. There are 990 files given as training
data for the source domain, and only 10 are given for training
the target domain. All files contain 10 s of normal machine
operating sound. No anomalous sound sample is given. This
task condition reflects an application scenario in which there
are several operating modes but a limited number of recordings
is available for training. For testing systems, the Evaluation
dataset of the DCASE2022T2 was used: 50 normal and 50
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Fig. 1: Additional training and Evaluation dataset of
DCASE2022T2.

anomaly files for source and target domains; 200 unlabeled
files per section in each machine type.

C. Performance evaluation metric

Following the ranking rule of the DCASE2022T2, the
total score Ω for evaluating the systems is calculated based
on Area Under the Receiver Operating Characteristic (ROC)
curve (AUC) and partial AUC (pAUC) with a harmonic mean
(hmean) of AUC and pAUC using the following formula:

Ω = hmean{AUCm,n,d, pAUCm,n (1)
| m ∈ M, n ∈ S(m), d ∈ {source, target}},
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The AUC is calculated based on the anomaly scores Aθ(·) of
normal samples x−

i and anomaly samples x+
j on each domain

d ∈ {source, target} of machine type m ∈ M and averaged
over sections n ∈ S(m), where m is the machine type
indicator and n is the section indicator in the machine type.

The pAUC is calculated on each machine type m ∈ M and
averaged over sections across domains. N−

d is the number of
normal samples in each domain. N−

n and N+
n are the numbers

of normal and anomaly samples in the section n of the machine
type m respectively. H(·) is a function that returns 1 when
x > 0 and 0 otherwise. For the pAUC calculation, the false-
positive rate (FPP) p is set to 0.1. ⌊·⌋ is a floor function.
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Fig. 2: Overview of modified baseline Autoencoder.

III. PROPOSED BASELINE SYSTEM FOR FIRST-SHOT
DOMAIN GENERALIZATION

Several systems were proposed in the DCASE2022T2.
Some of the winning systems adopted classification-based
detectors. Classification was performed among the samples
from different sections given. For example, there were three
sections in the machine type ToyCar. Note that there were
two baseline systems in the DCASE2022T2; the DCASE 2022
task 2 Autoencoder (AE) and MovileNetV2 [13], [14], [15].
However, those two baseline systems are not compliant with
the First-shot requirements.

This paper proposes a First-shot compliant baseline system
that provide the target performance benchmark for the forth-
coming DCASE2023T2. In the proposed baseline, there are
two operating modes.

A. First-shot compliant simple AE mode
The First-shot compliant simple AE mode is implemented

based on the DCASE2022T2 baseline AE [13] with slight
modification. Its structure is shown in Fig. 2.

While the DCASE2022T2 baseline AE is trained with all
the section data in the target machine type, the First-shot
ready version takes only the target normal samples from the
dedicated section in the machine type. Therefore, three models
dedicated to each section should be trained when there are
three sections in the dataset.

Input audio samples are analyzed using STFT with 64-ms
frames with 50% hop and then converted into 128 bands of
Log-mel energies. Five consecutive frames are concatenated
to formulate input vectors to the autoencoder, which has 640
dimensions.

For training, the model parameter θ of the AE is trained
to minimize the mean square error (MSE) between an input
normal sample x− and its reconstruction x̂− using

Loss = MSE(x−, x̂−), (4)
where x̂− = Decθ(Encθ(x

−)). (5)

For the testing phase, the anomaly score is calculated with
the reconstruction error of the given query sample x using

Anomaly Score Aθ = MSE(x, x̂), (6)
where x̂ = Decθ(Encθ(x)). (7)

When the anomaly score exceeds the pre-set threshold, the
sample is detected as an anomaly sample.

B. Selective Mahalanobis AE mode
On top of the First-shot compliant simple AE mode in III-A,

the Mahalanobis distance [16] is introduced to calculate the
anomaly scores. This strategy is a tiny subset of what has been
applied in Liu CQUPT task2 4 [4] which was the first-place
winner of the DCASE2022T2.

The basic model structure and the training scheme are
equivalent to the AE mode shown in III-A except the co-
variance matrixes Σ−1

s and Σ−1
t of distance between normal

samples x− and its reconstruction x̂− for the source and target
domains are calculated after the last epoch update of training.

The anomaly score Aθ is calculated using those covariance
matrixes with:

Anomaly Score Aθ = min{Ds(x, x̂), Dt(x, x̂)}, (8)
where Ds(·) = Mahalanobis(x, x̂,Σ−1

s ), (9)
Dt(·) = Mahalanobis(x, x̂,Σ−1

t ). (10)

We call this the Selective Mahalanobis AE mode in this paper.

C. Design principle of the proposed baseline system
Baseline models described in Secs. III-A and III-B are

implemented as one baseline source code having two operating
modes. The new baseline is implemented with PyTorch while
the previous DCASE2022T2 baseline autoencoder [13] is
implemented using Keras. The network architecture of those
is equivalent.

There were several potential tools tested to be included.
For example, tools introduced in [17], [18], [19] have been
examined. However, the performance improvement of those
tools was not significant enough in terms of the total score
compared to the added complexity (i.e., the source code level
complexity and the run-time computational complexity).

Serving as a baseline implementation, simplicity is one
of the most important aspects. Therefore, we decided not to
include them and rather keep it simple.

IV. EXPERIMENTS

The DCASE2022T2 Additional training and Evaluation
datasets described in Sec. II-B were used to evaluate the per-
formance of the proposed baseline systems. The performance
scores of the First-shot compliant simple AE mode (FS-AE)
and the Selective Mahalanobis AE mode were assessed with
the performance evaluation metric described in Sec. II-C.

The frame size for STFT was 64 ms with 50% hop size
translated into 128 frequency bands Log-mel energies. Five
consecutive frames were concatenated to formulate 640 dimen-
sions (128 x 5) as input to the system. There were three layers
of 128 dimensions linear, Batch normalization, and Activation
with ReLU each. The bottleneck layer had eight dimensions.
The number of epochs for training was 100. The batch size
was 256, and the Adam optimizer used a 0.001 learning ratio.

Test results with three different random seeds and the aver-
aged scores are compared with scores of the DCASE2022T2
systems as shown in Table I. The total score of the First-shot
compliant simple AE mode and the Selective Mahalanobis AE
mode should be the target benchmarks for the DCASE2023T2
Challenge.
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TABLE I: AUC results on the Evaluation dataset of the DCASE 2022 Challenge Task 2 under domain-generalization conditions.

System metric hmean∗1 amean∗1 ToyCar ToyTrain fan gearbox bearing slider valve

First-shot compliant AUC (source) 0.6484 0.6779 0.8229 0.4943 0.6609 0.7137 0.7475 0.7563 0.5493
simple Autoencoder AUC (target) 0.5143 0.5451 0.6571 0.5195 0.3679 0.6116 0.5639 0.5275 0.5681
mode (FS-AE) pAUC (src & tgt) 0.5335 0.5407 0.6582 0.4967 0.5114 0.5200 0.5426 0.5361 0.5195
random seed 13711 TOTAL score 0.5596 0.5879

AUC (source) 0.6520 0.6822 0.8509 0.4986 0.6524 0.7087 0.7493 0.7624 0.5529
AUC (target) 0.5143 0.5449 0.6778 0.5251 0.3575 0.5969 0.5627 0.5293 0.5653

pAUC (src & tgt) 0.5367 0.5452 0.6786 0.4988 0.5175 0.5128 0.5528 0.5347 0.5211
random seed 13591 TOTAL score 0.5616 0.5908

AUC (source) 0.6542 0.6808 0.8253 0.5063 0.6554 0.7125 0.7468 0.7595 0.5596
AUC (target) 0.5084 0.5355 0.6263 0.5283 0.3487 0.5993 0.5597 0.5222 0.5639

pAUC (src & tgt) 0.5329 0.5402 0.6607 0.4965 0.5118 0.5128 0.5468 0.5356 0.5170
random seed 13267 TOTAL score 0.5584 0.5855

AUC (source) 0.6515 0.6803 0.8331 0.4998 0.6562 0.7116 0.7479 0.7594 0.5539
AUC (target) 0.5123 0.5418 0.6537 0.5243 0.3580 0.6026 0.5621 0.5264 0.5657

pAUC (src & tgt) 0.5344 0.5420 0.6658 0.4973 0.5136 0.5152 0.5474 0.5355 0.5192
Average TOTAL score 0.5599 0.5880
Selective Mahalanobis AUC (source) 0.6597 0.7118 0.9528 0.4862 0.6789 0.8533 0.7216 0.7572 0.5329
AE mode AUC (target) 0.5610 0.6082 0.8371 0.5043 0.4211 0.7801 0.6286 0.5568 0.5289
(Tiny subset of Liu [4]) pAUC (src & tgt) 0.5660 0.5805 0.7879 0.5118 0.5221 0.6104 0.5753 0.5389 0.5170
random seed 13711 TOTAL score 0.5923 0.6335

AUC (source) 0.6654 0.7140 0.9378 0.5048 0.6809 0.8493 0.7215 0.7660 0.5375
AUC (target) 0.5533 0.5990 0.7977 0.5067 0.3969 0.7689 0.6300 0.5625 0.5301

pAUC (src & tgt) 0.5628 0.5779 0.7826 0.5035 0.5109 0.6095 0.5786 0.5440 0.5161
random seed 13591 TOTAL score 0.5897 0.6303

AUC (source) 0.6700 0.7155 0.9297 0.5183 0.6862 0.8504 0.7153 0.7678 0.5409
AUC (target) 0.5528 0.5924 0.7547 0.5116 0.3984 0.7681 0.6254 0.5593 0.5296

pAUC (src & tgt) 0.5580 0.5707 0.7509 0.5047 0.5068 0.6014 0.5751 0.5395 0.5161
random seed 13267 TOTAL score 0.5890 0.6262

AUC (source) 0.6650 0.7138 0.9401 0.5031 0.6820 0.8510 0.7195 0.7637 0.5371
AUC (target) 0.5557 0.5999 0.7965 0.5075 0.4055 0.7724 0.6280 0.5595 0.5296

pAUC (src & tgt) 0.5623 0.5763 0.7738 0.5067 0.5133 0.6071 0.5763 0.5408 0.5164
Average TOTAL score 0.5903 0.6300
cf. DCASE2022T2 AUC (source) 0.6450 0.6755 0.7753 0.5981 0.6383 0.6975 0.7271 0.7605 0.5315
baseline AE∗2 AUC (target) 0.4515 0.4833 0.5100 0.3919 0.3267 0.5702 0.5384 0.4959 0.5501
(not First-shot compliant) pAUC (src & tgt) 0.5292 0.5356 0.6249 0.4944 0.4995 0.5209 0.5563 0.5391 0.5144

TOTAL score 0.5305 0.5648
cf. DCASE2022T2 AUC (source) 0.5907 0.6436 0.6347 0.4692 0.7088 0.6283 0.6067 0.7470 0.7103
baseline MobileNetV2∗2 AUC (target) 0.4748 0.5230 0.4037 0.6302 0.3506 0.4619 0.5460 0.4971 0.7715
(not First-shot compliant) pAUC (src & tgt) 0.5358 0.5420 0.5582 0.5082 0.5191 0.4972 0.5091 0.5291 0.6726

TOTAL score 0.5295 0.5695
cf. DCASE2022T2 Top 1 AUC (source) 0.7734 0.8312 0.8818 0.6176 0.7435 0.9668 0.7190 0.9516 0.9380
Liu CQUPT task2 4∗2 AUC (target) 0.7212 0.7514 0.8851 0.7250 0.5484 0.8419 0.6827 0.7557 0.8213
[4] (massive ensemble, pAUC (src & tgt) 0.7464 0.7618 0.8845 0.7046 0.5734 0.8604 0.6885 0.7286 0.8387
not First-shot compliant) TOTAL score 0.7097 0.7815
∗1hmean denotes harmonic mean, and amean denotes arithmetic mean. ∗2The last three systems are not compliant with the First-shot requirements.

V. CONCLUSION

This paper proposed a baseline system for First-shot-
compliant unsupervised anomaly detection scheme for ma-
chine condition monitoring.

The proposed system complies with the First-shot require-
ments; namely, it does not use any other data samples from
different machine IDs, and no hyperparameter nor ensemble
based on the performance observation of the grand truth of
test data is used. It is trained with given normal training data
only.

Experimental results showed that the performances of the
proposed baseline with two operating modes, the First-shot
compliant simple AE mode, and the Selective Mahalanobis
AE mode, are better than the baselines of the DCASE2022T2
baseline AE and MobileNetV2. It is also shown that the
performances of the proposed two operating modes of base-

line AE are not comparable to the first-place winner of
the DCASE2022T2 that utilized the machine-type dependent
hyperparameter tuning and massive tool ensemble.

Since the proposed system complies with the First-shot
requirement, it is expected to perform similarly well on any
real data in the industry.

The proposed system will be the baseline showing
performance benchmark for the forthcoming DCASE 2023
Challenge Task 2: First-shot Unsupervised Anomalous
Sound Detection for Machine Condition Monitoring. The
source code of the proposed system is available on GitHub
(https://github.com/nttcslab/dcase2023 task2 baseline ae) [9].

Further improvement should be expected throughout the
Challenge.
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