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Abstract—In this paper, we describe a novel generative classi-
fier for audio events based on the projected belief network (PBN).
The PBN is a layered generative network formed from a feed-
forward network, so it can be simultaneously trained as a gen-
erative model for a given class, and as a discriminative classifier
against “all other classes”. A PBN can also be shortened to any
number of layers, allowing the output features of the shortened
network to be modeled using an arbitrary probability density
function (PDF) estimator. We exploit these properties of PBN
to model the features from the output of an early convolutional
layer, where a time dimension is still present, using a hidden
Markov model (HMM). The special generative/discriminative
training of the PBN produces generative features that are also
high in discriminative information, forming a generative classifier
combining (a) a discriminative deep network and (b) a generative
neural network, and (c) a HMM classifier rooted in classical
Bayesian approaches. The approach is demonstrated in the task
of acoustic event classification.

Index Terms—projected belief network, generative models,
acoustic event classification

I. INTRODUCTION

A. Motivation and Main Contributions

In the past years, acoustic event detection has shifted
from using generative models such as hidden Markov models
(HMMs) [1]–[3] to almost exclusively using discriminative
deep learning based models such as convolutional neural
networks (CNNs) [4], [5]. Still, there remains room for im-
provement in the design of classifiers for acoustic events,
and this needed improvement may come from generative
approaches. Despite the almost universal advantage of dis-
criminative classifiers in a one-to-one comparison, generative
approaches do have a place, especially in open-set problems
[6], [7]. It is clear that given equal performance, a generative
classifier is preferred because it possesses an inherent model
of the data generation process, which can serve to create
synthetic data and can help detect out-of-set events. Especially
the latter is important for acoustic event detection, since for
most applications the set of all sounds that may appear are not
known a priori and thus only training a closed-set classification
model is impractical and not sufficient.

A projected belief network (PBN) [8]–[11] is a generative
model implemented by working backwards (back-projecting)
through a feed-forward neural network (FFNN). The method
of normalizing flows [12] has recently become popularand,
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similar to a PBN, can define a probability density function (i.e.
generative model) from a network. But NF is a special case
of PDF projection in which the network is composed of only
1:1 (bijective) transformations. Since most neural networks
are composed of dimension-reducing layers, the more general
PBN is required to create generative models from these.

Recently, we introduced a combined generative-
discriminative architecture called discriminative alignment
of projected belief network (PBN-DA) [13], in which the
performance rivaled discriminative classifiers. In this paper,
we propose a modification to PBN-DA, called PBN-DA-
HMM, in which the features in the early convolutional layers
of a PBN-DA network, where data still has a time dimension,
are tapped off and passed to a HMM for generative modeling,
forming a shortened PBN network with HMM feature
distribution. In the PBN-DA training of the early-stages of
the network, discriminative information is present. In acoustic
event classification, the proposed method is shown to have
about the same classification error rate as the conventional
feed-forward deep neural network (DNN) and PBN-DA, while
yielding about the same performance as a CNN. Moreover,
when combining PBN-DA-HMM with a CNN the number of
errors is significantly reduced showing that both models learn
different representations and thus have a different view on
the data.

B. Related Work

Similar to the presented approach, there are several works
on combining autoencoders with other models to improve
the performance for different tasks based on acoustic data.
One example is jointly training variational autoencoders and
HMMs for unsupervised acoustic unit discovery of speech
[14], [15]. In [16], the intermediate representation of a dis-
criminative model is used as input to an autoencoder for
speech emotion recognition. Another example is unsupervised
learning of representations for acoustic event detection [17].
Here, first an autoencoder that predicts the next frame of a
Mel-spectrogram is trained and second a pairwise loss is used
to take inter-sample similarity of the representations into ac-
count and thus yield more meaningful audio representations. In
contrast, the proposed approach combines the generative task
(i.e. autoencoder or generative model) with the discriminative
task in a single network using PBN.
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II. MATHEMATICAL BACKGROUND

A projected belief network (PBN) is unique among layered
generative networks because it operates implicitly by backing-
up through a feed-forward neural network (FFNN). The FFNN
is the dual network for the generative process [8], [11].
The PBN is based on PDF projection, which is related to
normalizing flows (NF) [12]. In NF, the data distribution
is seen as a 1:1 (dimension-preserving) transformation of a
simple probability density function (PDF), so its likelihood
function (LF) is easily computed. For dimension-reducing
transformations, which most neural networks consist of, PDF
projection is required.

A. Review of PDF Projection

Subject to mild constraints, any fixed dimension-reducing
transformation, y = T (x), together with the known or as-
sumed feature distribution g(y), corresponds to a probability
density function (PDF) on the input data [18]–[20] given by

G(x) =
p0,x(x)

p0,x(y)
g(y), (1)

where p0,x(x) is a prior distribution and p0,x(y) is its mapping
to y through T (x) (in our simplified notation, the argument of
the distribution defines its range of support, and the variable in
the subscript defines the original range where the distribution
was defined). If p0,x(x) is selected for maximum entropy,
then G(x) is unique for a given transformation and g(y).
The PDF of the input data can be estimated by training the
parameters of the transformation to maximize the mean of
logG(x), resulting in a transformation that extracts sufficient
statistics and maximizes information [21]. We say that G(x)
is the “projection” of g(y) back to the input data. We call the
term J(x)

∆
=

p0,x(x)
p0,x(y)

the “J-function” because in the special
case of dimension-preserving transformations (i.e. normalizing
flows [12]), J(x) is the determinant of the Jacobian of T (x).
To generate data from G(x) in (1), one draws a sample y from
g(y), then draws a sample x from the set {x : T (x) = y},
weighted by the prior distribution p0,x(x).

PDF projection admits a chain-rule by applying the idea
recursively to stages of a transformation. Consider a cascade
of two transformations, y = T1(x), and z = T2(y). Then,
applying (1) recursively,

G(x) =
p0,x(x)

p0,x(y)

p0,y(y)

p0,y(z)
g(z), (2)

which can be extended to any number of stages. The data
generation is also cascaded. Note that p0,x(y) and p0,y(y) are
two different distributions on the range of y. While p0,y(y) is
originally defined on the range of y, p0,x(y) can be written
T1[p0,x(x)].

Generative models based on multiple feature extraction
approaches are possible. Consider two feature extraction
chains, resulting in features z1, z2, with distributions g1(z1)
and g2(z2). Then, a maximum likelihood classifier can be
constructed by comparing G1(x) and G2(x), where these
functions are separately defined using (2) in the obvious way.

TABLE I
MAXENT PRIORS AND ACTIVATION FUNCTIONS AS A FUNCTION OF INPUT

DATA RANGE. TG=“TRUNC. GAUSS.”. TED=“TRUNC. EXPON. DISTR”.
N (x)

∆
= e−x2/2

√
2π

AND Φ(x)
∆
=

∫ x
−∞ N (x) .

XN MaxEnt Prior p0,x(x) λ(α)

RN
∏N

i=1 N (xi) (Gaussian) α (Linear)
PN

∏N
i=1 2N (xi), 0 < xi (TG) α+

N (α)
Φ(α)

(TG)

UN [0, 1]N (Uniform) eα

eα−1
− 1

α
(TED)

B. Review of PBN

When PDF projection is applied to a FFNN layer-by-layer,
this results in the projected belief network (PBN) [11]. To
illustrate the sampling process in one layer, let y ∈ RM

be the hidden variable at the output of a given layer of a
FFNN, and let x ∈ RN be the layer input, where N > M .
Let y = λ (b+W′x) , where λ( ) is a strictly monotonic
increasing (SMI) element-wise activation function. We seek
to sample x given y. Because the SMI activation function and
bias are invertible, we can work with the output of the linear
transformation, denoted by z = W′x. Specifically, x is drawn
randomly from the manifold M(z) = {x : W′x = z}, i.e.
we draw x from the set of samples that map to z, randomly
from M(z) proportional to a prior distribution p0,x(x), which
is selected according to the principle of maximum entropy
[22] (MaxEnt), while meeting any constraints that include
the range of the variable x, denoted by XN , determined by
which activation function was used in the up-stream layer. We
consider three canonical ranges, RN : xi ∈ (−∞,∞),∀i, PN

: xi ∈ [0,∞),∀i, and UN : xi ∈ [0, 1],∀i. For a MaxEnt
distribution to exist in the first two cases, we need constraints
on the variance 1.

The canonical MaxEnt priors for the ranges RN , PN , and
UN , are the Gaussian, truncated Gaussian (TG), and uniform
distributions, respectively, which are listed in Table I. The uni-
form distribution is a special case of the truncated exponential
distribution (TED). Additional details can be found in [8], [9].
As an aside, there is a deterministic way to sample a PBN,
which results in a kind of auto-encoder [8].

C. Discriminative Alignment of PBN (PBN-DA)

It is generally assumed that the discriminative approach to
classification is superior to the generative approach, because
estimating the class distributions at high dimension is much
harder than predicting the class label [23], [24]. Looking at a
PBN, one can come to a different conclusion: the parameters
of a PBN (the layer weights and bias values) simultaneously
define a FFNN (which can be a discriminative classifier),
and a generative model, i.e. with LF given by (2). One can
think of it as a two-way street, information conceptually
flows forward through the network to form a discriminative
classifier, and backward to form a generative model. However,
a discriminative classifier is trained on all data classes, while

1In the case of PN , a constraint on the mean is adequate, but this leads to
an uninteresting solution.
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generative models must be trained separately on each class.
This dilemma was solved by the method of discriminative
alignment [13] in which each class-dependent network is
trained simultaneously as a generative model for the given
class, but also as a discriminative model against “all other
classes”. This approach tends to ”align” the network weights,
giving the generative model high selectivity against the other
classes, getting the best of both the generative and discrim-
inative approaches. Despite the benefits, a PBN cannot use
max-pooling in convolutional layers, limiting the performance
as a classifier. Despite this, the resulting generative classifier
has been shown to rival the performance of discriminative
classifiers, and when combined with them, produces results
that exceed either individual approach [9], [13].

D. PBN-DA-HMM

Since a PBN is a recursive structure, if it is broken in the
middle, the second half acts as a PDF estimate for the hidden
variables coming out of the first half, denoted by h. Let the
true distribution of h be written p(h). The second part of
the PBN implements G(h), which is an estimate of p(h),
implemented by PDF projection, e.g. equation (2). However,
it can be that the dimension of h is small enough that one
can use well-known PDF estimation methods, such as HMM,
to replace, and possibly improve upon G(h). The Markovian
assumption, exploited by the hidden Markov model (HMM)
while over-simplified, provides an excellent compromise be-
tween tractability and generative modeling accuracy.

In traditional HMM classifier, one uses a conventional fea-
ture extractor, such as log-MEL spectrograms, then estimates
class-dependent LFs using HMM. Instead, we propose to pre-
train a full PBN on a given class, applying discriminative
alignment, to give the feature extractor (i.e. the first part of the
PBN) discriminative information against “all other classes”,
then, combine the class-depedent LFs using the concept at
the end of Section II-A. There are two advantages to this, (a)
the use of class-dependent feature extraction can potentially
improve class selectivity in the generative classifier, and (b)
the use of discriminative alignment in the pre-training lends
discriminative information to the features.

III. EXPERIMENTAL RESULTS

A. Data Selection, Feature Selection, and Feature Extraction

The ESC50 data set [25] consist of 50 data classes, with
of 40 ten-second recordings in each data class. The classes
are diverse, and it is difficult to represent them well by one
feature extraction approach alone. As outlined in Section II-A,
PDF projection allows the use of multiple feature extraction
approaches in a single common generative model. But, before
attempting to conduct an experiment on all 50 classes using
multiple features, we wanted to conduct a limited feasibility
experiment on a small data subset. To select a suitable data
subset, we examined all 50 classes and extracted log-MEL-
band features using overlapped Hanning-weighted processing
windows, then reconstructed the time-series from the features
using maximum-entropy feature inversion [26], followed by

overlap-add time-series reconstruction. The time-series were
played back and compared acoustically with the original.
We chose appropriate FFT size, numbers of MEL bands,
as well as either MEL or linear band spacing to optimize
the perceived quality of the reconstructed sound. We found
that of the 50 classes, 23 classes were well represented by
the following features: FFT size 768, 2/3 overlap, 48 log-
MEL-spaced bands. The features for each 10-second event
consisted of 624 time samples, resulting in a 624×48 (time
× freq) matrix. The 23 classes (classes are numbered 0-
49) were 0,1,6,9,10,11,13,16-19,21,23-25,27-30,36,45,47,49.
In order to obtain the most meaningful experiment, we selected
the most challenging subset of these 23 classes by conducting
a classification experiment using a conventional DNN. We
found hat a set of 8 classes caused the bulk of the inter-class
errors. These classes were: 0 (Dog bark), 13 (Crickets), 21
(Sneeze), 23 (Breathing), 24 (Coughing), 25 (Footsteps), 30
(Door knock), 49 (Sawing). We then conducted a feasibility
experiment for PBN-DA-HMM using just the chosen features
and these 8 classes. There were then 8×40 total events.

To partition the data, we used random 4:1 random data
holdout, selecting 10 testing samples of the 40 samples of each
class class at random, and trained on the remaining 30. We did
this four times, independently. The partitions were designated
by letters A-D. We provide these features and holdout folds
online for reproducibility [27].

B. Network Architectures

We used three network architectures in the experiments, (a)
the “PBN networks”, which were trained separately on each
of the 8 classes, (b) a “DNN classifier” which was almost
identical to the networks used for the PBNs but was trained
as a classifier on all classes, and (c) a state of the art “CNN
classifier”.
PBN networks. The seven-layer PBN network had three con-
volutional and 4 dense layers, ending with a classifier layer of
8 neurons. The input data is 624×48 (time × freq). Kernels in
the three convolutional layers were 8 12×16 kernels, 30 10×5
kernels, and 60 21×3 kernels respectively. Downsampling
was 3×4, 3×2 , and 3×1. Convolutional border modes were
“valid”. The dense layers had 256, 64, 16, and 8 neurons. The
last layer is the cross-entropy classifier (output) layer. The
output of the third convolutional layer has dimension 16×60,
which is tapped off for HMM processing. For the HMM, the
data is seen as having 16 time steps and a feature dimension
of 60. The eight class-dependent PBN networks used linear
activation at the output of the first 3 layers, in order to form a
Gaussian group [9]. The remaining layers used the truncated
Gaussian (TG) activation [28], similar in behavior to softplus,
not unlike leaky Relu [29], but continuous (see Table I).
DNN classifier. For the DNN classifier, we used the same
network as for the PBN networks, but used TG activation
function in all layers, and max-pooling instead of down-
sampling in the convolutional layers. We also used dropout
regularization in layers 4 and 5.
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CNN classifier. For the CNN, we used the system presented
in [30], which is designed for anomalous sound detection but
can also be used for classifying acoustic data by choosing the
auxiliary task for training the system to be the classification
task as done in [31]. More concretely only the sub-model
for spectrogram representations, which is based on a modified
ResNet architecture [32], is used. The model is trained using
the sub-cluster AdaCos loss [33] with 4 sub-clusters to learn
mapping the input samples to discriminative embeddings. This
loss is an angular margin loss with an adaptive scale parameter
similar to AdaCos [34] but uses multiple instead of a single
centers for each class, called sub-clusters. When training the
model, dropout with a probability of 50% applied to the hidden
representations before the last dense layer [35]. Additionally,
we used two data augmentation techniques to improve the
performance of the CNN. As a first technique, we applied
mixup [36] to the input samples and their corresponding
classes using a mixing coefficient sampled from a uniform
distribution. Secondly, we applied random cyclic temporal
shifts to the spectrograms. The CNN is trained with a batch
size of 8 for 100 epochs using adam [37] and is implemented
in Tensorflow [38].

After training, the embeddings for each sample are extracted
and normalized with respect to the Euclidean norm. Then, for
each class k-means is applied to the embeddings of the training
samples to get 4 mean embeddings. Then, the maximum cosine
similarity over these 4 mean embbedings is determined and
used as a similarity score for this particular class.

C. Experimental Approach and Results

For PBN-DA-HMM, we followed the method described
in Section II-D, summarized as follows: (a) We first train
a separate PBN on each class m using a combined cost
function consisting of negative log-likelihood PBN cost, and
cross-entropy classification cost for the given class against
“all others”, scaled by a factor of 1000, (b) then shorten the
networks by tapping off the output of the third layer, with data
shape 16×60 (seen as 16 time steps, 60-dimensional feature),
(c) train an HMM to estimate the probability distribution
pm(hm) of this output map, (d) create a generative classifier
using the class-dependent feature approach at the end of
Section II-A by multiplying pm(hm) by the corresponding J-
function (see beginning of Section II-A). The classification
is made by choosing the PBN network with highest log-
likelihood, and this is calculated from the log of the combined
J-function for the first 3 layers, plus the LF of the HMM. An
example of this for a 2-layer network is equation (2), where
g(z), is replaced by the HMM distribution. Because the HMM
was significantly dependent on the random initialization, we
always conducted three trials, and averaged the results. For
data augmentation during training, we used random time shifts
with a maximum of ±10 time segments.

The number of errors for each of the 4 data partitions are
shown in Table II for DNN classifier, PBN-DA (the unshort-
ened PBN networks), PBN-DA-HMM, and CNN classifier. It
can be seen that DNN performs worst followed by a better

TABLE II
NUMBER OF ERRORS ON EACH OF THE 4 DATA PARTITIONS.

Partition
Algorithm A B C D mean
DNN 24 24 33 26 26.75
PBN-DA 26 18 18 12 18.5
PBN-DA-HMM 10.7 4.3 14.3 6 8.8
CNN 7.3 9 11.3 8 8.9
two CNNs 5 6.7 9 5.7 6.6
PBN-DA-HMM and CNN2 7.7 5 7 2 5.4

performing PBN-DA. Furthermore, PBN-DA-HMM and CNN
have a very similar performance that is significantly better than
both other classifiers.

It is well-known that combining the output of several models
usually improves the classification performance, especially if
the combined classifiers (a) have comparable performance,
and (b) they are based on different methods or views of
the data. This is especially true for CNN and PBN-DA-
HMM. The resulting number of errors is shown in Figure
1 as a function of the linear combining factor. It is clearly
visible that combining both approaches significantly reduces
the number of errors. Moreover, when comparing the results
of this combination to the ones obtained when combining
two CNNs, which slightly improves performance as shown in
Tab. II, the resulting performance is better verifying that both
models, CNN and PBN-DA-HMM, indeed must have different
views of the data.
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Fig. 1. Mean of errors over all four partitions when combining PBN-DA-
HMM with CNN.

D. Reproduceability

Because we used a non-standard subset of ESC50 data,
and non-standard data partitions, we make the feature data
available, as well as software and instructions to reproduce
the results in this paper as [27].

2These numbers are obtained using an optimal combination factor with a
value of 1100 in this case.
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IV. CONCLUSION AND FUTURE WORK

In this paper, a new generative classifier has been described.
PBNs are trained separately on each class using discriminative
alignment, ensuring that the generative models are selective
against the other data classes. Then, the PBNs were shortened,
tapping off at a convolutional layer, where the time dimension
is present. The probability density of these features are esti-
mated using HMMs, which leverage the Markov assumption to
create good probability density density estimates. The resulting
generative model is shown to rival the performance of a state of
the art discriminative classifier. Furthermore, when additively
combined, the error rate was cut in half relative to each
approach by itself, a verification of the independent nature
of the two competing approaches.

For future work, it is planned to extend the results to the
full ESC50 data set.
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