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Abstract—Anomalous sound detection (ASD) aims to detect
unknown anomalous sounds emitted from a target machine.
Most advanced ASD systems use a complicated neural-network-
based detector with the log Mel spectrum as input. However,
different types of machines have different vibration frequency
regions depending on their physical property. The Mel filterbank
(FB), which has high resolution in low-frequency regions and
low resolution in high frequency, may filter out discriminative
information from some important frequency regions, particularly
the high-frequency regions. We propose to quantify the frequency
importance in ASD of seven types of machines using the Fisher’s
ratio (F-ratio). The quantified frequency importance is then used
to design an ensemble of machine-wise non-uniform FBs and
extract the log non-uniform spectrum (LNS). This LNS feature is
input to an autoencoder NN-based detector for anomalous sound
detection. Experimental results in the DCASE2022 Challenge
Task 2 verify the correctness of the quantification results and the
effectiveness of the proposed LNS. With a simple autoencoder-
based detector, the performance in the averaged harmonic mean
of the area under the ROC curve achieved a relative improvement
of 9.22 and 5.60% in development and evaluation datasets,
respectively.

Index Terms: Anomalous sound detection, frequencies im-

portance, data-driven non-uniform filterbank, log non-uniform

spectrum, F-ratio.

I. INTRODUCTION

Anomalous sound detection (ASD) for machine condition

monitoring enables workers to arrange maintenance work to

fix machine problems in the earliest stages of anomaly, thus

reducing maintenance costs and preventing damage. Devel-

oping advanced ASD systems is an important component of

the fourth industrial revolution and has received increasing

attention in recent years [1], [2]. ASD can be classified into

two types of problems [3], i.e., supervised ASD in which

recordings of anomalous events to be detected are available

in training, and unsupervised ASD in which recordings of the

anomalous events are not available in training.

Most methods for ASD are based on an unsupervised

autoencoder (AE) model [4]–[6] because of difficulties in

collecting anomalous sounds that can cover all possible types

of anomalies [7]. These methods are used to detect “unknown”

anomalous sounds that have not been observed using recon-

struction errors. However, because the training procedure does

not incorporate anomalous sounds, the effectiveness of such
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models may be limited if the learned features also fit with the

anomalous sounds.

Recently, many sophisticated models are adapted and ap-

plied to further improve the effectiveness of back-end detectors

[8], [9]. For example, the WaveNet architecture was used by

Hayashi, et al. [10]. [11] proposed an ASD approach that

utilizes a denoising autoencoder (AE) architecture with both

feed-forward and Long Short-Term Memory (LSTM) units.

The self-supervised approaches were used in [12], [13] to

provide some additional information, i.e., machine type and

machine identity (ID). [14] proposed a new AE architecture,

named as Fully-Connected U-Net, to replace the conventional

AE model. However, the performance of the neural network

(NN)-based ASD methods depends significantly on the dis-

crimination of acoustic front-ends.

The log Mel spectrum (LMS) is widely used as an acoustic

front-end in an NN-based ASD system [4], [6], [15]. The Mel

filterbank (FB) is designed on the basis of the pitch perception

of the human ear. It has a higher resolution in the low-

frequency regions and a lower resolution in the high-frequency

regions [16]. However, it can be argued that the human ear

is not the most effective in detecting machine anomalies.

Moreover, different types of machines have different vibra-

tion frequency regions depending on their physical prop-

erty. Consequently, the discriminative information of sounds

emitted from different types of machines may be encoded

non-uniformly in the frequency domain. The Mel FB may

filter out important information at the high-frequency regions,

decreasing the performance of an ASD system. Therefore,

quantifying the importance of the frequencies of different types

of machines for ASD is necessary.

How can the importance of different frequencies be quanti-

fied? The Fisher’s ratio (F-ratio) is a statistical-based method

and widely used to measure the discriminative ability of

a feature for pattern recognition [17]. It has been used to

evaluate the importance of different frequencies in speaker

recognition [18], [19], emotion recognition [20], and replay

attack detection [21]. The calculation of the F-ratio requires

no training data and is comparatively straightforward and

efficient.

To extract more distinguished information from the fre-

quency domain, we propose to quantify the frequency im-

portance in ASD of sounds produced by seven types of

machines using the F-ratio, called machine-wise F-ratio. We
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Fig. 1. Systems using LNSs extracted by the proposed data-driven non-uniform FBs with AE-based detectors for machine ASD.

are the first to quantify the frequency importance of machines

using the data-driven method to detect anomalous sounds.

With the quantification results, we aim to visualize where

the discriminative features of each machine are encoded in

the frequency domain. To highlight such important frequency

bands, we design seven non-uniform FBs which have high

resolutions in the frequency regions with high F-ratios and

extract the log non-uniform spectrum (LNS). Experimental

results in DCASE2022 Challenge Task 2 verify the correctness

of quantification results and effectiveness of the proposed

LNS.

II. QUANTIFICATION OF FREQUENCY-BAND IMPORTANCE

USING MACHINE-WISE F-RATIO

The frequency bands with more discriminative features

should possess high inter-class variances and low intra-class

variances between normal and anomalous sound classes [18].

Therefore, we defined the F-ratio for machine m as

Fm =
1

2

∑
c(um,c − um)2

1

2N

∑
c

∑N

i=1
(xim,c − um,c)2

, (1)

where xim,c is the sub-band energy of the i-
th audio of class c with i = 1, 2, ..., N , m ∈
{fan, gearbox, bearing, slider, toycar, toytrain, valve}, and

c ∈ {normal, anomaly}. The equations

um,c =
1

N

N∑

i=1

xim,c and um =
1

2N

∑

c

N∑

i=1

xim,c

are used to calculate the variables that represent the sub-band

energy averages for class c and for all classes, respectively.

Equation (1) is the ratio between the inter-class variances

and intra-class variances of speech power in a given frequency

band. A larger value obtained in a frequency band means that

more discriminative information is encoded in that band.

III. DESIGN OF DATA-DRIVEN NON-UNIFORM

FILTERBANKS FOR LNS EXTRACTION

To show the correctness of quantification results, we de-

signed non-uniform FBs and used them to extract the LNS

for each machine. The non-uniform FBs were designed by

highlighting the frequency bands with relatively high F-ratios.

The distribution density of the triangular band-pass filters is

assigned to be directly proportional to the F-ratios. The steps

for designing a non-uniform FB are as follows: (1) calculate

the weight k based on the Fm, k = fs/(2×
∑
Fm), where

fs is the sampling frequency, (2) calculate the cumulative sum

(CS) of the weighted Fm, CS = Cumsum(k × Fm), (3) fit

the curve of the mapping frequency from the linear scale to

the adaptive scale by using the cubic spline interpolation, (4)

calculate the center frequencies of the triangular band-pass

filters C(j) on the basis of the fitting curve, and (5) design

non-uniform FBs with the non-uniform resolutions.

Finally, the LNS was extracted by replacing the FB used in

the extraction processes of the LMS. The detailed process of

our proposed ASD systems are shown in Fig. 1, the AE model

includes encoder, bottleneck layer, and decoder modules. All

modules consist of fully connected layers. The mean squared

error (MSE) is used as the cost function to optimize the overall

system. In the testing phase, audio with high reconstruction

error was treated as anomalous sound.

IV. EXPERIMENTAL SETUP

A. Datasets

We used the dataset provided by the DCASE2022 Challenge

Task 2 [22], [23]. The dataset is comprised of normal and

anomalous sounds produced by seven types of machines, i.e.,

fan, gearbox, bearing, slide, tor car, toy train, and valve.

Sounds recorded from each type of machine are divided into

six sections in accordance with the differences in machine

configurations; sections 01, 02, and 03 are organized in the de-

velopment dataset; sections 04, 05, and 06 are in the evaluation

dataset. During the analysis step, we used {100 normal,100

anomaly}×3×7 clips of the development data to calculate F-

ratios. During the training step, we used 1,000×3×7 clips of

the development data to train the AE model. It is worth noting

that the data used to calculate the F-ratio is not used for model

training. During the evaluation step, we used 200×3×7 clips

of test data in both the development and evaluation datasets to

evaluate the effectiveness of the proposed method. The length

of each clip was fixed to 10s.
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Fig. 2. Frequency-band importance of Mel scale and quantified frequency-band importance using machine-wise F-ratio for each machine. All frequency-band
importances were normalized from 0 to 1.

B. Evaluation metrics

The area under the curve (AUC) and partial-AUC (pAUC)

for the receiver operating characteristic (ROC) curves were

used to evaluate the proposed ASD method. The formulae of

AUC and pAUC can be found in [4]. Generally, AUC and

pAUC are the average sums of anomaly scores. However, the

difference between pAUC and AUC is that pAUC is designed

to focus on a low false-positive-rate portion of the ROC curve

over a pre-specified range of interest [0, p = 0.1]. In practical

situations, if an ASD system generates false alarms frequently

(high false-positive rate), the system is not trustworthy. There-

fore, using pAUC to encourage a high true-positive rate under

low false-positive-rate conditions is essential.

C. Experimental conditions

To extract the LMS, 10-s audio clips were first split

into different frames with frame lengths of 64 ms and

hop lengths of 32 ms. The Mel-spectrogram feature was

then extracted with the following parameters: n fft=1024,

hop length=512, num filters=128, and power = 2.0. We

extracted the LNS using the same configuration but different

FBs compared with the LMS. Five consecutive frames with a

sliding window were concatenated into one feature vector with

a dimension of 640 and fed into the detector. For example, we

assume that the input signal is X = {Xt}
T
t=1

where Xt ∈ R
M ,

and M and T are the number of Mel-filters and time-frames,

respectively. Then, the acoustic feature at t is obtained by

concatenating consecutive frames of the feature as ψt ∈ R
D,

where D = P ×M , P = 5, M = 128 and D = 640. The

reconstruction error is calculated as:

E(X) =
1

DT

T∑

t=1

‖ ψt − r(ψt) ‖
2

2
, (2)

where r(ψt) is the vector reconstructed by the AE model, and

‖ · ‖2 is L2 norm.

The AE model had four dense layers with 128 dimensions

for the encoder/decoder and one bottleneck layer with 8

dimensions. We trained the model for 100 epochs using the

Adam optimizer [24] with a learning rate of 0.0001 and batch

size of 128.

V. RESULTS

The quantification results of discriminative information for

ASD for each machine are shown in Fig. 2. We also illustrate

the frequency-band importance of the Mel scale for com-

parison. This result can be understood as the derivative of

the Mel scale. It is evident that the frequency importance in

the Mel scale decreased with the increase in frequency. The

quantification results using the machine-wise F-ratio indicate

that the discriminative feature for ASD of each type of

machine was encoded non-uniformly in the frequency domain.

There are many discriminative features concentrated in the

high-frequency regions, such as the gearbox and slider.

Based on the F-ratios, we designed the machine-wise ASD

systems on accordance with the pipeline shown in Fig. 1,

and carried out experiments to examine its effectiveness. The

results of harmonic mean (HM) and arithmetic mean (AM) in
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TABLE I
OVERALL RESULTS BY USING THE PROPOSED (LNS) AND BASELINE

(LMS) FEATURES IN TERMS OF AUC (%) AND PAUC (%) IN THE

DEVELOPMENT DATASET.

Machines Sections
AUC pAUC

LMS Proposed LMS Proposed

Toy car
AM 64.22 66.48 53.25 56.11

HM 63.01 65.00 53.23 56.05

Toy train
AM 51.20 57.35 50.49 52.65

HM 49.55 56.74 50.48 52.62

Bearing
AM 56.68 65.75 50.93 58.18

HM 55.65 65.12 50.86 57.70

Fan
AM 64.45 60.68 58.39 56.79

HM 63.14 59.23 57.93 56.40

Gearbox
AM 65.54 70.10 59.00 59.93

HM 65.28 69.79 58.74 59.26

Slider
AM 63.68 69.95 56.54 62.49

HM 62.77 68.98 56.27 62.28

Valve
AM 50.59 54.53 50.33 50.72

HM 50.38 54.41 50.29 50.70

Average
AM 59.48 63.55 54.13 56.69

HM 55.05 60.13 53.76 56.20

both development and evaluation datasets are listed in Tables I

and II, respectively. All results are shown in percentages, and

the improved results are highlighted in bold.

The proposed LNS generally improved the performance in

both development and evaluation datasets for most of the

machines. The LNS obtained the highest improvement in

the bearing of the development dataset and in the toy car

of the evaluation dataset, which are relative improvements

of 17.02 and 16.94 % for HM, respectively. By using the

proposed LNS, averaged HMs improved from 55.05 to 60.13%

in the development dataset and from 47.14 to 49.78% in the

evaluation dataset, achieving relative improvements of 9.22

and 5.60% respectively.

There are two exceptions. The proposed LNS provided

better performance in the fan of the evaluation dataset, but the

performance degraded in the development dataset. In contrast,

the LNS performed better in the slider of the development

dataset even when degradation occurred in the evaluation

dataset. This could be because the frequency-band importance

is calculated independently with Eq. (1), which makes it

difficult to consider the combined effects of each frequency

component for all machines with the F-ratio. A more suitable

quantification method could further improve performance.

Figure 3 shows a comparison of results between our

proposed method with 83 other methods for fan and toy

car. Each dot corresponds to a different system proposed in

the DCASE2022 Challenge Task 2. There was a significant

improvement by replacing the LMS of the baseline (blue

dot) with the LNS extracted with our quantification results

(red dot). The other state-of-the-art methods appeared to have

TABLE II
OVERALL RESULTS BY USING THE PROPOSED (LNS) AND BASELINE

(LMS) FEATURES IN TERMS OF AUC (%) AND PAUC (%) IN THE

EVALUATION DATASET.

Machines Sections
AUC pAUC

LMS Proposed LMS Proposed

Toy car
AM 59.20 70.43 56.91 63.32

HM 57.07 66.74 56.46 62.49

Toy train
AM 44.73 46.13 50.26 49.09

HM 44.44 43.53 50.25 49.06

Bearing
AM 44.79 51.86 50.23 51.09

HM 43.20 51.43 50.17 51.09

Fan
AM 48.81 50.90 51.07 51.46

HM 47.91 50.54 51.02 51.43

Gearbox
AM 51.63 54.45 50.40 52.32

HM 50.40 53.09 50.40 52.19

Slider
AM 49.16 48.35 50.61 50.23

HM 44.52 44.45 50.56 50.18

Valve
AM 45.60 45.31 49.65 49.68

HM 45.15 45.27 49.62 49.67

Average
AM 49.13 52.49 51.31 52.45

HM 47.14 49.78 51.13 52.00
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Fig. 3. Results in the evaluation dataset of DCASE2022 Challenge Task 2
using sounds recorded from the fan and toy car. Blue and red dots correspond
to the baseline and proposed systems, respectively. The higher AUC and
pAUC, the better performance.

higher performances; however, they employ heavy deep NNs

containing hundreds of millions of parameters and pre-trained

models.

VI. CONCLUSION

We quantified the importance of different frequencies for

anomalous detection of seven types of machines using a

data-driven statistical-based quantification method (machine-
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wise F-ratio). We found that the discriminative features of

each machine were encoded non-uniformly in the frequency

domain. To highlight such important frequencies, we designed

non-uniform FBs that have high resolutions in the frequencies

with high F-ratios and used them to extract the LNS. The

correctness of quantification results and effectiveness of the

proposed LNS were verified in the DCASE2022 Challenge

Task 2 with a simple AE-based detector. Compared with the

LMS, the LNS achieved a relative improvement of 9.22 and

5.60% in development and evaluation datasets in terms of

averaged HM of AUC, respectively. Future work will involve

more sophisticated NN-based detectors to further improve the

performance of an ASD system.
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