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Abstract—Gunshot detection in natural environments is crucial
for the protection of endangered species. In this work, we
present a novel dataset built from the soundscape recording at
five different locations of the Spanish Albufera National Park.
We then carry out an experimental study to detect gunshots
from the rest of the background sounds and noises labeled
as “background”. For this purpose, we perform comprehensive
experiments both in the data input and the modeling stages
of three efficient deep convolutional neural networks (DCNNs),
obtaining an F1 score (harmonic mean of precision and recall) of
0.92 for the best model. The best three DCNNs are also used to
monitor one hour of the Albufera soundscape where the gunshot
class represents 8% of the testset. The recall values obtained
with our model are comparable to previous works monitoring
gunshots in real scenarios.

Index Terms—Gunshot detection, natural environment, deep
learning, convolutional neural networks.

I. INTRODUCTION

Gunshot detection in natural environments is of great im-
portance for the protection of endangered species. Automatic
systems capable to carry out gunshot detection have been
researched for many years. The first systems were developed
within the framework of multimedia sensor networks [1],
focusing on the deployment of the recording devices and the
communication among them, while in recent years research
has focused on algorithms to detect gunshots in real environ-
ments as nature and cities [2]–[4].

Our work consists in a preliminary study of different deep
neural network models to detect gunshots in the environment
of the Albufera Natural Park (Spain), where an installation
of audio devices described in Section II-B cover the lagoon
area of the park. Our goal is to find out which deep learning
models can efficiently model gunshots in real environmental
conditions.

In recent decades, sound event detection (SED) solutions
have been proposed to predict the occurrence of certain events
in audio signals [5], [6]. Their approach is similar to that of
performing a sequence labeling task: at each step, it has to
distinguish the presence or absence of a particular event. The
main problems that a sound event detector has to overcome are
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the variability of acoustic environments, such as background
noise and distance to the sound, the appropriate choice of the
size of the temporal processing window, and the presence of
other overlapping sounds.

With respect to previous work on gunshot detection using
Deep Learning (DL) architectures, [7] uses the combination
of several feature matrices in a single-color image. Their
algorithm was tested with noisy audio recordings and proved
to be robust against false positive detections. In [8], a new
architecture based on standard residual blocks is proposed
and evaluated using a real audio track from an action movie.
Recently, attention mechanisms [9] have also been applied to
this problem. A detailed discussion on previous works achieve-
ment in real life environment condition will be provided in
Section IV-A.

Our significant contributions to the field of acoustic event
classification are1:

• We build a preliminary dataset of the soundscape of the
Albufera Natural Park formed by two classes of audio
events: “gunshot” and “background”.

• We identify appropriate parameters of the preprocessing
stage and the DL models for gunshot detection in the park
through extensive experimentation, providing valuable
insight for researchers working with similar types of
audio data.

• We obtain comparative results to previous works on
gunshot detection using similar real environment datasets.

II. AUDIO DATASET

A. Study area
The Albufera Natural Park is located on the Gulf of Valencia

coast in eastern Spain (39◦17′ N, 00◦20′ E), and has a surface
area of 20, 956 ha. The park has a large shallow water lagoon
extended over 23.94 km2 called “L’Albufera”, which is fed by
streams, rivers, and irrigation channels, and is one of the most
representative and valuable coastal wetlands of the Valencian
Community and the Mediterranean basin. It was declared a
Natural Park by the Spanish Government in 1986, and since
1989 it has been recognized as a “Wetland of International
Importance”by the “The Convention on Wetlands”2. It is also

1Python code underlying DL models and gunshot dataset is available on
GitHub https://github.com/gpinyero/EUSIPCO2023.

2https://rsis.ramsar.org/ris/454
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Fig. 1. Map of the L’Albufera lagoon and surrounds with the location of the
acoustic nodes.

an integral part of the European Natura 2000 Network, having
been declared a “Special Protection Area for Bird” (SPA) in
1990. The overall waterbird numbers reach a mean of 80, 000
annual individuals.

Even though there are 45 endangered animal species in
the area, many of them waterbirds, hunting is permitted in
restricted areas inside the natural park. This year’s hunting
season began on November 13, 2022, and ended on February
12, 2023, with hunting allowed only on Saturdays, Sundays,
and holidays, except during the third week of January, when
hunting was also allowed on weekdays. In this sense, auto-
matic gunshot detection is very important for the technical
staff of the park for:

• Detecting poachers on prohibited days.
• Localizing hunting in the proximity of the Albufera bird

nature reserves.

B. Recording techniques

Ten acoustic nodes have been deployed in the lagoon area,
as shown in Fig. 1. The acoustic nodes are commercial
devices, specifically the “Song Meter Mini” model from
Wildlife Acoustics, whose specifications are available on their
website.3. Five nodes were installed in four small islands
inside the lagoon (Mata de l’Antina, Mata de San Roc (2
nodes), La Maseguerota and Mata del Fang) and the other
five nodes were installed on the land surrounding the lagoon:
Tancat de Milia (2 nodes), La Tancadeta (2 nodes) and the
park’s administrative office. The three places can be accessed
only by authorized staff. In all the places with two nodes, the
devices were at least 80 m apart one from another. The sample
rate of all the nodes was set to fs = 24000 Hz.

The overall goal of the installation is not only to detect
dangerous situations, but mainly to study the birds’ behavior in
the Albufera environment. For this reason, the acoustic devices
were programmed to record the soundscape when the birds are
more active, thus, before and after the sunrise and the sunset.
However, hunters usually go out during the sunrise period, so

3https://www.wildlifeacoustics.com/products/song-meter-mini

we will use for this study the recordings taken from 5.30 a.m.
to 10.30 a.m. CET. At this moment we have access to the
soundscapes recorded between November 13 and December
14, 2022, saved as wav files of 60 minutes duration each,
resulting in 160 hours of audio recordings.

C. Gunshot dataset

Only the two nodes located at Tancat de Milia, two nodes
at La Tancadeta, and the node from La Maseguerota island
have been used to build the gunshot dataset used in this work.
The land nodes are located close to grounds where hunting is
permitted, so a reasonable amount of gunshots could be found,
especially from 6.30 a.m. in advance.

The background sounds that can be found in the recordings
contains a wide set of natural sounds (birds and frogs singing,
noises due to animals moving around the node, wind noise)
together with human-caused noises such as airplanes, boat
engines, speech, etc. On the East and West sides of the park,
there are two roads with intense traffic during weekdays, but
the five selected nodes are far enough to get affected.

As said before, we collected 160 hours of audio recording.
However, to build the dataset, we analyzed only the first
ten minutes of the five nodes recorded on November 13
at 8:30 a.m. Therefore, the training dataset consists of 418
audio segments that include one or more gunshots, labeled as
“gunshot”, and 449 audio segments that do not include any,
labeled as “background” [10]. All of them have been extracted
from recordings taken at the two nodes of Tancat de Milia
and the two nodes of La Tancadeta and have a duration of 3
seconds. From the whole training set of 867 segments, 15%
of the segments are used for validation.

The test dataset has been extracted from the La
Maseguerota’s node, including 55 “gunshot” and 171 “back-
ground” audio segments of 3 seconds each. We have listened
to other audio recordings taken on different days and hours,
and we can conclude that the built dataset is representative of
the two classes. More information about the database content
will be discussed in Section IV-A.

III. METHOD

A. Data processing

The Mel spectrogram has been widely used when dealing
with the problem of sound event detection in natural environ-
ments [10], [11] and it is also used here. We compute the 128-
bands Mel spectrogram of 3 seconds segments using frames
of 900 samples (37.5 ms), weighted by a Hanning window of
the same length and with a 50% frame overlap, covering the
frequency range 0 − 12.000 Hz. As a consequence, each 3-
second segment has been converted to a time-frequency matrix
of 159×128 real values. As a final step, the decimal logarithm
of the matrix elements has been computed.

Moreover, to find out the relevance of the frequency range
in gunshot detection, we carried out different experiments
varying the number of bands. We evaluate our models with
the full spectrogram of 128 bands, but also with a cropped
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spectrogram containing the first 83 bands (0− 3.818 Hz) and
only the first 60 bands (0− 1.995 Hz).

Finally, since the DL models employed in this study use a
ReLU activation function, it would be convenient to normalize
the input elements between 0 and 1 since the ReLU activation
function zeroes out the negative values. For this purpose,
we computed the log-magnitude with two different reference
levels in the librosa.power to db python function: 1) the
maximum absolute value of the Mel spectrogram, and 2)
the mean of their median values. After computing the log-
magnitude, we applied an optional normalization between 0
and 1.

B. Models

We employed three different Deep Convolutional Neural
Networks (DCNN) architectures in our experiments: VGG-
16 [12], ResNet-34 [13] and MobileNet v2 [14].

1) VGG: VGG16 is a DCNN that consists of 16 layers,
including 13 convolutional layers and 3 fully connected layers.
The convolutional layers are arranged in sequential blocks,
with each block consisting of multiple convolutional layers
followed by a max-pooling layer. These convolutional layers
extract features from the input audio signal at increasing levels
of abstraction. The first layer learns low-level features, such as
edges and curves, while subsequent layers learn more complex
features, such as shapes and patterns. The final layers of the
VGG16 architecture consist of fully connected layers, which
combine the extracted features to make the final classification
decision.

2) MobileNet v2: The MobileNet v2 architecture has
demonstrated strong performance in image classification tasks
while requiring fewer computational resources compared to
other architectures. MobileNet V2 is a lightweight CNN.

The MobileNet v2 architecture consists of several build-
ing blocks, each containing a depthwise convolutional layer
followed by a pointwise convolutional layer. The depthwise
convolutional layer applies a separate convolutional filter to
each channel of the input audio signal, while the point-
wise convolutional layer applies a 1x1 convolutional filter
to combine the features from the depthwise convolutional
layer. This separation of the convolutional layers reduces the
computational cost of the model and allows for faster training
and inference.

3) ResNet-34: ResNet-34 is a DCNN that has been shown
to perform well on a wide range of image classification tasks.
The architecture consists of 50 layers, with skip connections
that allow for deeper networks without suffering from the
vanishing gradient problem.

The input to the ResNet-34 model is passed through a series
of convolutional layers with varying kernel sizes and numbers
of filters. The output of each convolutional layer is passed
through a batch normalization layer and a rectified linear unit
(ReLU) activation function. The network also includes four
”residual blocks” that use skip connections to improve gradient
flow and enable deeper networks. The final output of the

ResNet-34 model is a vector of probabilities indicating the
likelihood that the input audio clip contains a gunshot.

In our implementation, we modified its architecture by
replacing the last fully connected layer with a sigmoid layer
to obtain a binary classification output.

C. Activation functions

LeakyReLU (Leaky Rectified Linear Unit) is an activation
function used in neural networks, which is similar to the ReLU
(Rectified Linear Unit) activation function but allows a small,
non-zero gradient when the input is negative.

The ReLU function is defined as

f(x) = max(0, x) ,

with 0 output when the input x is negative and x otherwise.
While ReLU has been widely used in deep learning models
due to its simplicity and computational efficiency, it can suffer
from the “dying ReLU” problem where the gradient becomes
zero for negative inputs and the neuron effectively becomes
inactive. To address this issue, the LeakyReLU was introduced,
which modifies the ReLU function to

f(x) = max(ax, x) ,

where a is a small, positive constant (typically 0.01).
This means that for negative inputs, the function outputs a

small, non-zero value instead of 0, which allows the gradient
to flow even for negative inputs. Regarding our problem, the
Mel spectrogram can present negative and positive values after
computing the logarithm, thus it is interesting to consider
the LeakyReLU activation function. Additionally, it has been
shown to be more robust to noisy input data and can help to
prevent overfitting [15].

D. Loss function

The binary cross-entropy loss function is commonly used
in binary classification tasks, such as gunshot detection. It
measures the difference between the predicted probability
distribution and the true probability distribution of the target
class.

The binary cross-entropy loss function is defined as:

L(y, ŷ) = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi) , (1)

where y is the true binary label (0 or 1), ŷ is the predicted
probability of the positive class (i.e., the probability of a
gunshot sound in our case), N is the total number of examples,
and log is the natural logarithm. The loss function penalizes
the model when it predicts a low probability for the true
positive class and when it predicts a high probability for the
true negative class.
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E. Evaluation Metrics

The output of our model gives the probability of detecting
a gunshot in a given audio segment. We use a threshold of
0.5 to assume that current 3-seconds audio segment contains
one or more gunshots (p > 0.5). Using these predictions,
we compute several metrics to assess the performance of the
classifier, namely: precision, recall, and f1 score:

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

F1 =
2PrecisionRecall

Precision + Recall
(4)

For detecting rare sound events, the goal is to obtain
a balanced trade-off between recall (the proportion of true
positive events that are correctly identified) and precision (the
proportion of identified positive events that are true positives).
However, the F1 score is a significant metric when the rare
event is critically important to detect, as it takes into account
both precision and recall values and provides a balanced
measure of the model’s performance [16].

F. Experimental setup

We trained all our models using the dataset described in
section II during 85 epochs with the Adam optimizer and a
learning rate of 0.0001. An adaptive learning rate scheduler
called Reduce LR on Plateau is used. Thanks to the patience
parameter (set to 10 in our experiment), it determines how
many epochs the algorithm waits before reducing the learning
rate. The categorical cross-entropy loss was computed for a
batch size of 32.

Regarding the hardware, we used NVIDIA RTX 3090 24
GB x 1, 525.60.11 drivers & CUDA 12.0, MSI Z270 Gamming
PRO Carbon (MS-7A63); 32 GB and Intel i7-7700K (4.2
GHz), whereas the software used was Pytorch and Torchaudio
for building and training the models, and Sci-kit learn for
evaluation.

IV. EXPERIMENTAL RESULTS

Table I shows the set of conditions for the three mod-
els (VGG16, ResNet-34 and MobileNet V2) regarding the
reference values and the activation functions as described
in Sections III-A and III-C, respectively. In addition, we
tested the three sizes of the Mel spectrograms regarding their
frequency axis (128, 83, and 60) as explained in Section III-A.
Therefore, we run 6 × 3 × 3 training experiments, with a
total of 54 models. We then selected the top-5 performing
configurations for each DCNN, whose metrics obtained on
the test dataset are shown in Table II.

It can be noted from Table II that VGG16 shows the best
performance for the reduced frequency range of 60 and 83
bands, and considering the average median of their input
values as a reference. However, ResNet34 presents good
results with the full 128-bands image in three of their top
five models, although its performance is poorer than VGG16.

TABLE I
SET OF CONDITIONS FOR THE THREE NNS

exp reference norm leaky
1 max False False
2 max False True
3 max True False
4 max True True
5 medians True False
6 medians True True

TABLE II
TOP-5 CONFIGURATIONS FOR EACH MODEL (TEST SET).

model exp crop precision recall f1score
V GG161 6 60 0.87 0.98 0.92
V GG162 5 83 0.88 0.96 0.92
V GG163 6 83 0.84 0.98 0.91
V GG164 4 128 0.86 0.93 0.89
V GG165 5 60 0.8 0.96 0.88

(a) VGG16 model

model exp crop precision recall f1score
MobileNetV 21 3 60 0.46 0.67 0.55
MobileNetV 22 1 83 0.36 0.85 0.51
MobileNetV 23 3 83 0.37 0.76 0.49
MobileNetV 24 2 60 0.45 0.51 0.48
MobileNetV 25 6 83 0.44 0.47 0.46

(b) MobileNet V2 model

model exp crop precision recall f1score
ResNet341 1 128 0.85 0.93 0.89
ResNet342 5 83 0.86 0.87 0.86
ResNet343 2 60 0.8 0.89 0.84
ResNet344 5 128 0.85 0.84 0.84
ResNet345 2 128 0.8 0.89 0.84

(c) ResNet34 model

Regarding MobilenNetV2, it appears that it is not properly
working, possibly because of their lower number of parameters
with respect to the other two DCNNs.

Comparing to previous work on gunshot detection, our best
results lie very close to the range of recall and precision found
in the literature, even if our results are for the test dataset
and most of the previous works obtain their metrics from
the validation dataset. In [16], they used a ResNet18 CNN
architecture and obtained a recall of 95% and a precision
of 85% for a real dataset recorded in the Latin American
forest. In [7], they used a synthetic dataset of gunshots mixed
with background sounds such as traffic noise, human voice,
animal sounds and other forms of environmental sounds. Its
best model achieved a recall of 97.6% for the gunshot class
with a Resnet18 CNN, while its precision was near to one.
In [4], they used several 1-D and 2-D CNN models with a
majority-rules ensemble, obtaining an accuracy above 99% on
validation data for a residential environment in Santa Clara,
CA.

A. On gunshot detection in real conditions

To assess the DCNNs’ performance when working in real
conditions, that is, monitoring the audio recordings to de-
tect gunshots, we selected the three best performing models
marked in bold in Table II to predict an audio excerpt from
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TABLE III
RECALL FOR THE TOP-3 MODELS UNDER REAL MONITORING

model V GG161 V GG162 V GG163
gunshot 0.42 0.52 0.49

background 0.89 0.84 0.89

the La Maseguerota’s node of one hour duration. The test was
performed every second, extracting the segment containing the
following 3 seconds and labeling it as “gunshot” if any gunshot
is detected by the DL model, as it would be performed in real-
life conditions. Therefore, the number of total events presented
to the DCNNs were 3595, from which the groundtruth consist
on 285 labeled as “gunshot” and 3310 as “background”. In
some cases, the gunshots were very far from the recording
node and hard to distinguish by the human ear, to say that
gunshots appear with very different levels of signal-to-noise
ratio (SNR) with respect to the background soundscape. Since
the testset is very unbalanced, we show the obtained recall
values for the two classes in Table III.

Comparing to previous work, [16] obtained a 57% of
correctly identified gunshots in the Latin America forest
when monitoring new recordings. However, they added the
false positives of the “gunshot” class obtained from the new
recordings to the background training data, in order to help the
CNN to learn background sounds that have similar properties
to gunshots. This is a further step that we want to explore
with new node’s recordings as well. A poorer result of 35
identified gunshots from 280 was obtained by [4] when their
model was tested in Indianapolis. After retraining the original
model (obtained from a residential dataset) on this data, 158
out of 342 audio clips containing gunshots were positively
identified, resulting in a recall of 46.2%.

Finally, Fig. 2 shows clockwise four samples of Mel spec-
trograms detected as true positive (TP), false positive (FP),
true negative (TN) and false negative (FN) to notice how some
background sounds as duck quacking can be easily confused
with gunshots.

V. CONCLUSIONS

We have carried out an experimental study on a novel
dataset built from the soundscape recording at five different
locations of the Spanish Albufera National Park. Our goal was
to detect gunshots from the rest of the background sounds
and noises labeled as “background”. For this purpose, three
deep CNNs have been trained for different input and model
conditions resulting in 54 different networks. The best three
CNNs have also being used to monitor the soundscape in real
conditions, obtaining comparable results of recall values with
respect to previous works evaluating real datasets of Latin
American Forests and American cities. In the future, our aim
is to propose new approaches that can improve the F1-score,
such as anomaly detection techniques.
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