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Abstract—For non-intrusive speech quality assessment, we
treat the mean-opinion-score (MOS) of a speech signal as a latent,
and propose a latent MOS network (LaMOSNet) to estimate the
MOS. At the time of training, the proposed LaMOSNet has two
parts in series, with the first part providing the latent estimate, i.e.
the MOS of an input speech signal, and the second part providing
an estimated score by a given judge. Only the first part is used for
testing. We address two inherent aspects - limited-data and noisy-
data aspects - in training using stochastic gradient noise and a
student-teacher type of training, motivated by semi-supervised
learning. It is shown that LaMOSNet provides good performance
on the Voice Conversion Challenge 2018 dataset, and state-of-the-
art correlation performance on the Voice Conversion Challenge
2016 dataset.

I. INTRODUCTION
Neural networks have commonly been used in automatic

non-intrusive speech quality assessment for MOS prediction of
an input speech signal [1]–[8]. Due to lack of clean references
the training is challenging. A training dataset has speech
clips marked with labels as scores from human judges using
listening tests. A training dataset typically has two inherent
aspects: limited-data and noisy-data.

The limited-data aspect arises because each speech clip is
labeled with scores from a limited number of judges among
many judges. Due to the limited-data aspect, it is hard to
estimate the ‘true’ MOS, which we here loosely define as an
average of ‘sufficiently many’ scores from the entire human
population, as an average of scores from the limited number
of judges. On the other hand, the noisy-data aspect arises due
to the fact that human judges are noisy by nature. For the
same speech clip, judges typically provide different scores at
different times.

In presence of the two inherent aspects (limited-data and
noisy-data), our main contribution in this article is to propose
a neural network architecture, called LaMOSNet, that treats
the true MOS as a latent (hidden) variable and endeavors to
estimate it.

Two important issues to develop LaMOSNet are: model
architecture and model training. During the training phase, the
LaMOSNet architecture has two neural networks in series. The
first neural network provides an estimate of the true MOS for
an input speech clip; that means, an estimate of the latent.
Then the estimated MOS is used as input to the second neural
network that outputs the score of an individual judge. The
second neural network also uses the speech clip and a judge’s

identity. Therefore we can train LaMOSNet efficiently using
the training dataset.

For LaMOSNet training, we propose a new cost function
that has three main parts. The first part helps to provide an
estimation of the true MOS (the latent). The second part uses
the scores of judges per clip directly and handles the ‘limited-
data’ aspect. Finally, the third part imposes consistency in
training, like the cases of student-teacher networks applied in
image classification tasks [9], [10]. We also use stochastic gra-
dient noise-based training for robustness, which is successful
in semi-supervised image classification tasks [9], [11], [12].
The use of student-teacher networks and stochastic gradient
noise together addresses the ‘noisy-data’ aspect.

Relevant Literature: In this paper, the focus area is the use
of neural networks, mainly deep neural networks (DNNs), for
non-intrusive speech quality assessment. Contemporary works
including DNSMOS, NISQA, and MOSNet [4]–[6], all use the
observable MOS as target output. DNSMOS regularizes possi-
ble biases in MOS scores using student-teacher networks [5].
NISQA uses attention [6], an idea obtained from much-cited
transformer network [13]. MOSNet investigated architectural
designs and training parameters, and used convolutional neural
network (CNN) together with bidirectional-LSTM [4]. There
exist variants of MOSNet [14], [15], for examples, one based
on global-style-tokens (GST) [16], and another based on a
multi-task learning approach [15].

The proposed LaMOSNet has a conceptual resemblance
with the mean-bias network (MBNet) [7]. At the time of train-
ing, MBNet uses two networks in parallel: the first network
predicts MOS, and the second network provides a bias term,
which when added to the MOS predicts a judge’s score as a
final outcome. Like LaMOSNet, the predicted MOS in MBNet
can be interpreted as a latent variable. While MBNet uses a
simple additive model of estimated MOS and bias to predict a
judge’s score, LaMOSNet uses a DNN to capture the complex
non-linear relation between MOS, signal and judge. This is a
major difference between LaMOSNet and MBNet. Finally, for
a speech clip, the listener dependent network (LDNet) predicts
the scores of all judges as an extrapolation task, and finally
predicts the MOS score as the average of all judges’ scores
[8]. LaMOSNet does not perform the extrapolation task.
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II. PROBLEM FORMULATION

Let x denote the features of a speech clip and y the corre-
sponding MOS. Let us consider a ‘MOS-providing regression
function’ fθθθ(x) that provides an estimate of the MOS as

ŷ = fθθθ(x), (1)

where θθθ denotes the set of parameters.
Dataset and inherent aspects: Let N be the number of speech
clips and let J be the number of judges in the dataset. For the
n’th clip we denote its features as xn. Further, denote a set for
the identity of the judges as J = {1, 2, . . . , J}. For a speech
clip n, only a subset Jn ⊂ J provides scores. Let sjx denote
the score of j’th judge for the speech clip’s features xn, where
j ∈ J , and let Sn = {s(j)xn ; (j) ∈ Jn} be the corresponding set
of scores. The dataset available to us is D = {(xn,Sn)}Nn=1.

In our problem setup, |Jn| ≜ |Sn| is small, where |.| denotes
the cardinality of a set. That means each clip has a few scores.
This is the reason for the limited-data aspect of the dataset D.
For example, the dataset we will use later for our experiments
has only 4 scores per clip, which means |Sn| = 4, for all
n. Moreover the scores s

(j)
n are noisy due to human nature,

leading to the noisy-data aspect. Let the true MOS of the n’th
clip be denoted by yn, which is unknown. Then a standard
way of estimating yn can be an average over the available
scores, as follows

ỹn =
1

|Sn|
∑

s
(j)
xn∈Sn

s(j)xn
. (2)

Due to the two aspects, the estimate ỹn is expected to be
highly noisy and hence its use is not reliable.

Using the dataset D, we can create a new dataset D1 =
{(xn, ỹn)}Nn=1, and then use the new dataset for an end-to-end
training of a suitable regression function. Such an approach
was used for MOSNet [4], DNSMOS [5], NISQA [6]. As ỹn
is a highly noisy estimate of yn, the approach has limitations,
and may not generalize well for testdata.
The problem: We recognize that ỹn is a crude (noisy)
estimation of yn. Naturally, a question is: Can we use ỹn
and Sn together to train a regression function to estimate
yn? This question motivates us to formulate the problem: how
to use a new dataset D2 = {(xn,Sn, ỹn)}Nn=1 and develop
a regression function that is better than a regression function
learned using the dataset D1 = {(xn, ỹn)}Nn=1. To address
the problem, we develop a new method where the output of
a regression function is treated as a suitable latent variable in
the training phase.

III. LAMOSNET ARCHITECTURE AND TRAINING

Our objective is to develop a MOS-providing regression
method that can use judges’ scores s

(j)
xn in Sn at the time

of training. That means we wish to use D2.

Fig. 1. Graphical illustration of the LaMOSNet architecture.

A. LaMOSNet Architecture in the training phase

In the training phase, the LaMOSNet architecture outputs
two scores: a MOS estimate ŷ and an estimate ŝ

(j)
xn of s

(j)
xn .

This facilitates the use of scores s
(j)
xn in Sn efficiently at the

time of training, in turn the use of D2.
The architecture is designed as follows. We have two

neural networks that work in series. The first network is the
‘MOS-providing regression function’ providing the estimate
of the true latent MOS. The second network we call the ‘OS-
providing regression function’ and is denoted by gϕϕϕ(xn, ŷn, j)
given a judge j, where ϕϕϕ are the parameters and ŷn = fθθθ(x).
This means the LaMOSNet architecture is given by the two
regression functions introduced above, in cascade (series) and
jointly trained. The LaMOSNet architecture at the time of
training is shown in Fig. 1.

B. Training of LaMOSNet

To use D2, we propose the following cost function, which
consists of three parts:

L(θ, ϕθ, ϕθ, ϕ) = LM + λSLS + λCLC . (3)

Here LM is the MOS-enforcing part, LS is the score-enforcing
part, and LC is a consistency part; λS and λC are appropriate
regularization parameters. Since judges’ scores are noisy, and
hence also the observed MOS, we propose to use the method
Stochastic Gradient Noise (SGN), induced by stochastic label
noise [9]. This means that instead of using ỹn and s

(j)
xn as

targets, we perturb these values with Gaussian noise. Let
z1, z2 ∈ N (0, σ2) be Gaussian noise drawn at each iteration
(i.e., re-drawn each time the model sees the speech clips), and
let

ỹzn = ỹn + z1,

s(j),zxn
= s(j)xn

+ z2.
(4)

Then the parts LM and LS are defined as follows

LM =

N∑
n=1

∥ỹzn − ŷn∥2 =

N∑
n=1

∥ỹzn − fθθθ(xn)∥2,

LS =

N∑
n=1

∑
(j)∈Jn

∥s(j),zxn
− ŝ(j)xn

∥2

=

N∑
n=1

∑
(j)∈Jn

∥s(j),zxn
− gϕϕϕ(xn, fθθθ(xn), (j))∥2.

(5)
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We use σ2 = 0.01, obtained from a small hyperparameter
experiment on the validation data.

The consistency loss part LC is realized using a teacher-
student learning approach as per [10]. The reason for using
the approach is to provide robust learning in presence of noisy
labels (noisy-data aspect). We use the approach the following
way. Two LaMOSNet models are initialized, one is called the
teacher model and the other one is called the student model.
The teacher model inherits the student model’s parameters at
initialization. During training, the teacher model updates its
parameters θθθ′, ϕϕϕ′ with respect to an exponential moving aver-
age of the student’s parameters θθθ, ϕϕϕ, i.e. θθθ′ = αθθθ′ +(1−α)θθθ,
ϕϕϕ′ = αϕϕϕ′ + (1 − α)ϕϕϕ, where α is a hyperparameter [10]. In
particular, the teacher model is not directly trained to minimize
any loss function. The consistency loss LC = LC,M + LC,B ,
where the parts are given by

LC,M =

N∑
n=1

∥fθθθ(xn)− fθθθ′(xn)∥2,

LC,B =

N∑
n=1

∑
(j)∈Jn

∥gϕϕϕ(xn, fθθθ(xn), (j))

− gϕϕϕ′(xn, fθθθ′(xn), (j))∥2.

(6)

For clarity, the student model updates its parameters using
a numerical algorithm minimizing the loss L(θθθ,ϕϕϕ) in (3).
The teacher model updates its parameter according to an
exponential moving average of the student’s parameters.

C. Use of LaMOSNet in testing phase

After training, the MOS-providing regression function
fθθθ(x) can be directly used to estimate the MOS ŷ, given x.
Thus, we discard the OS-providing regression function.

D. Some details of the architecture

The DNN of LaMOSNet architecture has similar architec-
tural components as MBNet, with the difference of having
predicted MOS as input to the OS-providing regression func-
tion. The MOS-providing regression function consists of 12
convolutional layers, followed by 1 BLSTM, and then 2 fully
connected layers, which is the same configuration as in [7].
The reason for the CNN-BLSTM architecture is because it
gave the best performance in an architectural study in [4].

For the OS-providing regression function, the speech clip
is first processed by a convolutional layer with 16 kernels,
resulting in a heigth × width × 16 feature map. The ID of
the judge is embedded into Rheight×width according to a one-
to-one mapping. The mapping is done by assigning a value in
Rheight×width to each ID randomly from a normal distribution
with zero mean and unit variance. The predicted MOS is also
embedded into Rheight×width such that the MOS is repeated
height×width times into a vector in Rheight×width. After this
has been done, both the embedded judge ID and embedded
predicted MOS are concatenated to the feature map of the
speech clip along the channel dimension. This gives a feature
map of size height× weight× 18, which is the input to the
OS-regression function.

The OS-providing regression function consists of 4 convo-
lutional layers, followed by 1 BLSTM, and then 2 fully con-
nected layers. For both the MOS-providing and OS-providing
regression functions, batch normalization and dropout were
used. See [7] for more details on model architecture.

IV. EXPERIMENTS

In this section, we evaluate LaMOSNet and compare it vis-
à-vis several existing methods using appropriate datasets and
performance measures. The methods we compare are MOSNet
[4], MOSNet+EL (here EL means the use of Encoding Layer
for MOSNet) [14], MOSNet+GQT (here GQT means use of
Global Quality Tokens for MOSNet) [14], MOSNet+MTL
(here MTL means use of Multi Task Learning for MOSNet)
[15], MOSNet+MTL+FL (here MTL means Multi-Task learn-
ing, and FL means the use of Focal Loss for MOSNet) [15],
MBNet [7], and LDNet [8].

Among the above methods, we simulated MBNet and LD-
Net using their publicly available codebases. Other methods
are quoted from the relevant literature.

A. Datasets for experiments
We use two datasets for experiments: Voice Conversion

Challenge 2018 (VCC2018) [17], and Voice Conversion Chal-
lenge 2016 (VCC2016) [18]. VCC2018 is used for training,
validation, and testing, while VCC2016 is only used for
testing. Hence, we address an important issue of statistical
variability by training on VCC2018 and testing on VCC2016.
VCC2018 Dataset: VCC2018 consists of 20 580 speech clips
with various degrees of synthetic speech artifacts. The speech
clips are obtained from 38 different audio-to-audio voice
conversion systems, where each system has transformed the
vocal identity of the speaker. Each speech clip was rated by
4 judges from a crowdsourcing program, where each judge
assessed the naturality of the spoken words in each speech clip
according to the MOS scale (i.e., a discrete value from 1 to 5)
[19]. There are in total 270 judges, and each judge has rated
on average 226 speech clips. Among the 20 580 speech clips,
we use 13 580, 3 000, and 4 000 clips for training, validation,
and testing, respectively.

For the VCC2018 dataset, we can evaluate performance in
two ways – system-level and utterance-level. As there are 38
conversion systems in VCC2018, we can assess each system’s
performance as the mean of the speech quality of each speech
clip. The system-level performance is the performance to
predict the mean of the speech quality of a system’s speech
clips.

On the other hand, utterance-level performance is the per-
formance of a model to predict the MOS of a given speech
clip. Hence, the system which has operated on a speech clip
is irrelevant in the utterance-level performance.
VCC2016 Dataset: To test generalizability with unseen judges,
VCC2016 is used for testing while VCC2018 is used for
training. VCC2016 dataset consists of 26028 speech clips from
20 different systems [18]. Only system-level performance is
public, hence only system-level performance is evaluated in
our experiments.
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TABLE I
PERFORMANCE OF LAMOSNET AND COMPARISON WITH PRIOR METHODS. BOLDFACE NUMBERS HIGHLIGHT THE BEST VALUE IN EACH RESPECTIVE

COLUMN.

VCC2018 VCC2016
Training Utterance-level System-level System-level

Model Data Size MSE LCC SRCC MSE LCC SRCC MSE LCC SRCC
Not simulated. Results quoted from literature.

MOSNet [14], [15] 15.6k 0.448 0.651 0.619 0.039 0.966 0.924 0.316 0.896 0.858
MOSNet+EL [14] 15.6k 0.444 0.656 0.617 0.031 0.974 0.938 0.242 0.908 0.855
MOSNet+GQT [14] 15.6k 0.447 0.654 0.621 0.041 0.968 0.931 0.242 0.921 0.853
MOSNet+MTL [15] 15.6k 0.435 0.664 0.618 0.019 0.983 0.944 0.227 0.925 0.883
MOSNet+MTL+FL [15] 15.6k 0.431 0.668 0.622 0.016 0.985 0.944 0.208 0.904 0.864

Simulated in our experiments.
MBNet 13.6k 0.713 0.662 0.632 0.309 0.943 0.943 0.162 0.935 0.881
LDNet 13.6k 0.428 0.680 0.644 0.023 0.984 0.963 0.295 0.885 0.864
LaMOSNet 13.6k 0.432 0.687 0.656 0.034 0.982 0.960 0.325 0.936 0.888

B. Performance measures

Performance measures for evaluations are mean-square-
error (MSE), linear-correlation-coefficient (LCC), and
Spearman’s-rank-correlation-coefficient (SRCC). In our
experiments, while we are using the three stated performance
measures, relatively higher importance could be given to LCC
and SRCC measures as per [7].

For system-level evaluation, we use performance measures
appropriately. For example, VCC2018 has 38 systems. There
we compute MOS for each system across all speech clips. In
this way, we get 38 MOS numbers and correspondingly 38
predicted MOS. Then we compute MSE, LCC, and SRCC.

C. Features and training

All speech clips were downsampled to 16 kHz. We use
a spectrogram as the feature input to our system. For spec-
trogram computation, we used 32ms window length and
8ms window shift. We use repetitive padding of a speech
clip instead of zero-padding, to stabilize mean and variance
estimation in batch normalization [20].

LaMOSNet was implemented and trained on VCC2018.
It was trained for 60 epochs with Adam optimizer using a
learning rate of 10−4, weight decay of 10−5, and dropout
of 30%. For the loss function in eq. (3), we selected the
hyperparameters λS = 4 and λC = 1. The teacher model used
α = 0.99 for the first five epochs in the training phase since the
student model has a faster learning curve in the beginning, and
after the five epochs, we used α = 0.999. The model selected
was the teacher model with the highest LCC on validation
data, where testing on validation data was performed after
each epoch.

For comparison, we simulated MBNet and LDNet. We used
an unofficial, open-sourced implementation of MBNet1, as
per [8]. We used the official open-sourced implementation of
LDNet2, and used the MobileV3/RNN/- model architecture as
this had the best LCC performance on the utterance-level [8].
Best models are chosen as per standard validation.

1https://github.com/sky1456723/Pytorch-MBNet/
2https://github.com/unilight/LDNet

D. Experimental results for comparison

In Table I we show both the utterance-level and system-level
performances for VCC2018, and the system-level performance
for VCC2016. LaMOSNet, MBNet, and LDNet are trained
using the train-and-validation datasets of VCC2018. Each of
the models LaMOSNet, MBNet, and LDNet was trained 10 in-
dependent times respectively, and the average test performance
is reported in the table. The performances of other methods
are quoted from the relevant literature.

From Table I, we note that LaMOSNet provides state-of-the-
art performances for the utterance-level study on VCC2018
in the sense of LCC and SRCC. It also shows state-of-the-
art performances in the generalizability test on VCC2016 for
LCC and SRCC. The results indicate that LaMOSNet is a
competitive performer.

E. Experimental results for ablation study

To investigate the effect of different components of LaM-
OSNet, we conducted an ablation study. First, LaMOSNet was
trained without SGN. Second, LaMOSNet was trained without
the student-teacher training methodology. Third, LaMOSNet
was trained without consistency in the cost function, which
means λC = 0 in (3). Finally, LaMOSNet was constructed
without the OS-providing regression function gϕϕϕ. Removal of
the OS-providing regression function makes the architecture
being comprised of solely the MOS-providing regression func-
tion fθθθ, which means it is close to the MOSNet architecture.

The ablation study results are reported in Table II where
‘-SGN’ means LaMOSNet without SGN. In the case of the
VCC2018 dataset, the removal of any component leads to
a loss in all three performance measures. For system-level
performances of both VCC2018 and VCC2016, the removal of
components leads to a loss in the LCC performance measure.
Therefore, we argue that all the components and training
methodologies that we use for LaMOSNet are important.

V. CONCLUSION

In this work, we have proposed the model LaMOSNet that
predicts both the MOS and individual judges’ scores. It uses
semi-supervised learning techniques from image classification,
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TABLE II
ABLATION STUDY OF LAMOSNET. BOLDFACE NUMBERS HIGHLIGHT THE BEST VALUE IN EACH RESPECTIVE COLUMN.

VCC2018 VCC2016

Utterance-level System-level System-level
LaMOSNet MSE LCC SRCC MSE LCC SRCC MSE LCC SRCC

Normal 0.432 0.687 0.656 0.034 0.982 0.960 0.325 0.936 0.888
- SGN 0.480 0.686 0.656 0.088 0.975 0.952 0.350 0.930 0.886
- student-teacher 0.477 0.676 0.647 0.075 0.975 0.949 0.537 0.930 0.898
- LC 0.455 0.685 0.655 0.055 0.978 0.955 0.249 0.935 0.881
- gϕϕϕ 0.435 0.683 0.654 0.036 0.978 0.961 0.264 0.934 0.906

namely stochastic gradient noise (SGN) and teacher-student
consistency, as human judgment can be noisy and biased.
By the correlation measures LCC and SRCC, LaMOSNet
achieves state-of-the-art performance on the utterance-level on
VCC2018 and on the system-level on VCC2016. The results
illustrate that LaMOSNet is a competitive performer.
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