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Abstract—Automatic speech quality assessment finds impor-
tance in evaluating the quality of spoken speech, especially by
L2 speakers. Goodness of pronunciation, stressing on the right
syllable in a multi-syllable word, and oral fluency are a few
main components which are assessed for a speaker. While gauging
pronunciation and identifying the syllable stress is relatively stan-
dard, oral fluency assessment has large variation in the rubrics
used in addition to qualitative dimension to measure the quality
of fluency. In this paper, we explore, using Statistical Machine
Leaning (SML) and Deep Learning (DL) models, to classify oral
fluency using two publicly available datasets, namely, Avalinguo
Audio Dataset (AAD) and SpeechOcean762 (SO762). We introduce
pre-trained DeepSpeech model embeddings in conjunction with
known speech features like Mel- Frequency Cepstral Features
(MFCC) and Fluency Features (FF) to correctly predict the
fluency class. The best classification accuracy obtained for AAD
was 95.04%, while the same for SO762 was 77.12%.

Index Terms—oral fluency, goodness of pronunciation, machine
learning, deep learning, speech features, DeepSpeech

I. INTRODUCTION

The rapid increase of demand for second language (L2)
learners to study foreign languages leads to the imminent
need for an automatic L2 speech proficiency assessment. Good
oral fluency in the absence of speaking disturbances not only
enhances L2 language proficiency but also makes it sound
more natural and native-like to listeners. As a consequence,
L2 speech fluency assessment has been mostly embodied
in designing efficient Computer-Assisted Pronunciation Tools
(CAPT) for L2 learners. Though oral fluency suggests attaining
mastery over a language, there exists a debate in the definition
and measurement of fluency [1] . Therefore, developing an
automatic and reliable measure of oral fluency is essential in
language pedagogy, various fields of applied linguistics, and
language assessment.

The non-standard interpretation of oral fluency in different
disciplines render oral fluency assessment as an extremely
challenging task. Some technical challenges associated with
the oral fluency assessment are: (a) Oral fluency is often
conflated with the notion of language proficiency and therefore
assessing fluency in midst of other pronunciation problems
makes oral fluency assessment a challenging task, (b) Flu-
ency assessment is carried out by human experts on a given
perceptual scale. However, there is no consensus standard
scale for perceptual evaluation of oral fluency. And in the
absence of any standard training fluency assessment process
the perceptual assessment by human experts might be strongly
biased [1].

Fast and automatic assessment tool of fluency by means
of computerized programs has attracted a lot of attention.
This kind of assessment has been part of the most CAPT
and Computer-Assisted Language Learning (CALL) systems
for L2 learners. However, such systems which are actually
available to L2 learners and teachers are still scarce. Further-
more, the prerequisite for developing CAPT and CALL systems
are designing cost-effective and efficient algorithms that can
accurately and consistently predict the fluency score. Due to
the lack of availability of specific standard fluency assessment
tools, there is a tendency of relying on automatic speech
recognition (ASR) systems, either trained on native (L1) or
non-native (L2) or both speaker data which renders it unusable
[2], [3]. Moreover, most of the research studies focused on
L2 English as the non-native language. There exist very few
works on fluency assessment that consider non-English as the
L2 language [4]–[7]. Another challenge, especially in the era
of deep learning, is the lack of annotated training data. Many
previous works often rely on their own manually recorded,
and labelled (by human experts of fluency evaluation) datasets,
which are often quite small and also not publicly available [8]
[9].

In this paper, we explore and experiment with different
speech features and different classifiers to identify the oral
fluency class for speech assessment. We specifically concen-
trate on two publicly available datasets, namely Avalinguo
Audio Dataset (AAD) [10] and SpeechOcean762 (SO762) [11].
The main contribution of this paper is that for oral fluency
classification task:

• We implement and compare the performance of various
Statistical Machine Learning (SML) and Deep Learning
(DL) algorithms.

• We motivate the use of DeepSpeech embeddings as
additional features and demonstrate their performance.

• We report fluency classification results on SO762
database. To the best of our knowledge, no prior work has
reported fluency classification results on this database.

The rest of the paper is organized as follows. Section II
briefly describes the various statistical machine learning and
deep learning algorithms that we have used in this work.
Section II-B describes the various features that have been used
in this paper for oral fluency classification task. Section III
presents the experimental set-ups and results, while Section
IV concludes this paper.
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II. PROPOSED APPROACH

Figure 1 illustrates our proposed method for fluency classi-
fication.

A. Classifiers

We have experimented with and compared the performance
of various classifier algorithms such as: Gaussian Mixture
Model (GMM) [12], Support Vector Machine (SVM) [13],
Random Forest (RF) [14] and 1D CNN. Table I describes
the specifics of the SVM, RF, and GMM models used. Table
II describes the model architecture of 1D CNN. The model
consists of 8 blocks stacked together of which both BLOCK A
and BLOCK B are further made out of layers as shown in the
table. The last 2 layers are linear layers containing 32 neurons
and 3 or 4 neurons depending on the number of classes in the
working dataset.

TABLE I
MODEL DESCRIPTION OF SVM, GMM, AND RF MODEL

Model Parameters
SVM Radial Basis Function (RBF) Kernel,

Penalty Parameter (C) = 200, Gamma = 0.001
RF Maximum Depth = 18, Random State = None
GMM No. of Components = 16, Random State = None

TABLE II
MODEL DESCRIPTION OF 1D CNN MODEL

Unit Output Channels
BLOCK A 32
BLOCK B 64
BLOCK A 128
BLOCK B 128
BLOCK A 128
BLOCK B 128
BLOCK A 64
BLOCK B 32
LINEAR A 32 (neurons)
LINEAR B 3 or 4 (neurons)

BLOCK A
Conv1d (3× 3)

Relu
BatchNorm

BLOCK B
Conv1d (3× 3)

Relu
BatchNorm

Max Pool (2× 2)
Dropout (0.25)

B. Features for Oral Fluency

Mel Frequency Cepstral Coefficients (MFCCs) features are
the most widely used speech representation in applications
such as ASR systems, Speech Translation (ST), Speaker
Recognition (SR), Speaker Diarization (SD), etc. The MFCC
feature extraction process is explained in more details in [12].

Fluency Features (FF) comprise of signal-specific measure-
ments, such as number of syllables, number of pauses, rate of
speech, articulation rate, speaking duration, original duration,
and other fundamental frequency (f0) measures such as mean,
variance, median, minima, maxima, etc. of the f0 contour.
DeepSpeech Embedding Features (DSEF) have been used

extensively for speech analysis. It has also been shown in

Dataset
(AAD, SO762)

↓
Features

(MFCC, FF, DSEF)
↓

Classifier
(SVM, GMM, RF, 1D CNN))

↓
Accuracy
F1-score

Fig. 1. Flow diagram showing experimental setup.

[15] that number of < unk > outputs from DeepSpeech
can be a measure of speech intelligibility and ASR accuracy
is correlated with fluency as shown in [3]. Therefore, it is
conceivable that embeddings from DeepSpeech (an end to
end ASR) model will encode some fluency characteristics. We
chose DeepSpeech model to extract embeddings, which are
then used as features for oral fluency classification. Note that
DeepSpeech [16] is an end-to-end speech recognition sys-
tem comprising of a recurrent neural network (RNN) model.
This model is trained on thousands of hours of training data,
which is a combination of collected and synthesized data,
that induces robustness to noisy environments and speaker
variation [16]. The model consists of 5 hidden layers first
3 of which are non-recurrent, 4th layer is a bidirectional
recurrent layer, 5th layer takes the outputs from both forward
and backward layer of the bidirectional layer, and finally a 6th

softmax layer yielding character probabilities.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

The Avalinguo Audio Dataset (AAD) [10] consists of 1424
audio recordings of non-native English speakers labeled into
three classes, namely, low, intermediate, high fluency labels.
The audio is part of spontaneous (non-scripted) conversational
speech with low or no background noise. Each audio recording
comprises of a conversation around 10 minutes and this is
cut into 5 sec equal-length segments resulting in 120 audio
segments per 10 minute recording. In all, a total of 1420 non-
overlapped audio segments (≈ 2 hours) manually labelled into
one of the three fluency classes: low, intermediate, high.

In AAD, the fluency levels are annotated by the human ex-
perts and the fluency classes are defined as low, intermediate,
and high fluency. The low fluency class expects a person to talk
about on familiar topics but the speech has unnatural pauses.
The intermediate fluency class expects the person to be able to
describe experiences and events and is also capable of giving
reasons, opinions. However, there can still be some unnatural
pauses. The high fluency class expects the person to (a) speak
without unnatural pauses (no hesitation), and expects them to
not pause long to find expressions.
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SpeechOcean762 (SO762) is a new open-source read speech
corpus designed for pronunciation assessment usage1. The
database comprises of 5000 English utterances from 250 non-
native (L2) Mandarin speakers, where half of the speakers
are children. This corpus’s text script is selected from daily
life text, containing about 2, 600 common English words. The
number of sentences read aloud by each speaker is 20, and the
total duration of the audio is about 6 hours. The training and
test set are predefined in the database, with 125 speakers for
each. One of the key challenge associated with this database
for speech fluency assessment is the class-imbalance problem.
The details about the database can be found in [11].

Five human experts annotated the pronunciation of each of
the utterances at sentence-level, word-level and phoneme-level
in SO762. The sentence-level fluency annotations represent the
oral fluency. The sentence-level fluency according to different
score ranges are divided into four classes,

• 0-3: The speaker is not able to read the sentence as a
whole or there is no voice

• 4-5: The speech is incoherent, with many pauses, repeti-
tion and stammering

• 6-7: Coherent speech in general, with a few pauses,
repetition and stammering

• 8-10: Coherent speech, without noticeable pauses, repe-
tition or stammering

B. Experimental Setup

The SVM [17], RF, GMM and 1D CNN models trained on
AAD and SO762 try to learn the correct fluency class from one
or a combination of the input feature vectors and performance
metrics namely, accuracy and F1-score are computed as shown
in Fig. 1.

The 22 MFCC features are extracted with a frame length
of 25 ms and a window hop of 10 ms. These MFCC
features along with their ∆ and ∆2 features are verti-
cally stacked together resulting in 66-D MFCC features. Let
{Xi = x1, x2, · · · , xt} be a (t× 66) feature representation of
a ith speech sample. We take the mean of Xi across all the
t frames to get a 66-D feature vector. This averaging of the
MFCC features was done so that they can be stacked with the
fluency features which are computed for the entire utterances
rather than per speech frame.

Along with the 66-D MFCC features, we extract specific
features, called the fluency features (FF) from the speech (see
Section II-B). The 15-D FF are computed using the publicly
available myvoice analysis toolkit2. While all the 15-D FF
are used in case of SO762, for AAD we found that 4 of the
15 FF gave best classification accuracies.

Embeddings extracted from the DeepSpeech model, are
also used as features for the classification algorithms. Here
again, we take the mean of the extracted embeddings across
all frames to get 2048-D feature vector. To choose amongst
the best features suited for this problem, we selected the layer

1https://www.openslr.org/101/
2https://github.com/Shahabks/my-voice-analysis

Fig. 2. t-SNE plots of DSEF for AAD, (a) layer-1, (b) layer-2, (c) layer-3, (d)
layer-4, and (e) layer-5, are different layer outputs. Colours represent different
classes, namely, low, intermediate and high speech samples.

that showed the most distinction in the 2-D projected space,
via t-SNE plot. Figure 2 shows t-SNE plots for different
DeepSpeech layer outputs, for AAD. It can be observed
that, comparatively more distinct class clusters are present in
Fig. 2(c) that represents spatial dissimilarity amongst layer-3
embeddings of various classes. Hence, layer-3 DSEF are used
in all our further experiments on AAD and SO762 dataset.

We have employed mean and variance normalization for all
features in our study, i.e., the features were normalized so that
the mean for the entire set is a zero vector while the covariance
matrix is an identity matrix for the entire set.

The 1D CNN model, as described in Section II, has been
trained with cross-entropy loss function and a learning rate
of 5e-5. The model is optimised using Adam optimizer with
β-1 and β-2 being 0.9 and 0.999, respectively. The model
is trained for 200 epochs in the absence of DSEF. However,
results as reported in Table III and Table IV that involve DSEF,
are trained on one-tenth the number of epochs, i.e., only 20
epochs.

Finally, the system performance is evaluated using predic-
tion accuracy and F1-scores. Accuracy represents the correctly
classified data instances over total number of data instances
whereas F1-score captures both precision and recall of a
classification problem [18]. In case of class-wise balanced
data as in case of AAD, both accuracy and macro F1-score
are useful for system performance evaluation. However, in
case of imbalanced classes as in case of SO762, accuracy and
weighted F1-score is used. These metrics are evaluated using
the sklearn python library 3. The following sections discusses
more in depth about the results and observations.

3https://scikit-learn.org/stable/
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TABLE III
RESULTS ON AVALINGUO AUDIO DATASET (AAD).

Features SVM GMM RF 1D CNN

MFCC FF (4-D) DSEF Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
✓ × × 81.07 81.15 89.02 88.90 87.85 87.94 91.12 91.06
✓ ✓ × 81.07 81.13 84.81 84.73 89.95 89.88 89.49 89.45
× × ✓ 92.52 92.46 89.95 89.92 85.98 86.10 91.12 91.08
× ✓ ✓ 92.52 92.45 89.25 89.33 87.38 87.46 90.65 90.63
✓ ✓ ✓ 93.22 93.16 90.65 90.59 90.42 90.40 95.09 95.04

TABLE IV
RESULTS ON SPEECHOCEAN762 DATASET (SO762).

Features SVM GMM RF 1D CNN
MFCC FF (15-D) DSEF Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score
✓ × × 70.16 67.80 67.96 67.38 69.84 62.69 63.08 64.09
✓ ✓ × 75.16 73.95 73.00 72.00 77.12 74.07 71.56 71.73
× × ✓ 76.80 73.00 72.24 67.64 74.52 69.01 61.28 64.06
× ✓ ✓ 76.92 73.15 71.80 67.49 75.40 70.41 60.48 63.61
✓ ✓ ✓ 76.92 73.06 71.96 67.60 75.72 70.89 61.36 64.33

C. Experimental Results

Table III presents the results from our experiments with
AAD. It can be observed that with only 66-D MFCC features,
1D CNN provides the best performance with accuracy of
91.12% and F1-score of 91.06%. When FF are used along
with MFCC features, however, RF and 1D CNN provide
almost equal performance. For DSEF and DSEF with FF SVM
provides the best performance. If all the features: MFCC,
DeepSpeech embeddings and FF are stacked together, how-
ever, 1D CNN provides the best performance of 95.09%
accuracy and 95.04% F1-score. For AAD, we have used 5-
fold cross validation and the table shows mean of the 5-fold
experiments. 5-fold cross-validation is a procedure where the
entire data is split into 5 equal parts. Out of the 5 parts, the
model is trained on 4 parts and tested on the remaining part.
This process is repeated 5 times, till all the data points have
been tested once [19], [20]. These experiments present results
that follow a different trend than what has been reported in
[21]. This shows that features selected have an impact on the
performance of a particular classification method. In general,
DSEF along with MFCC and FF provide the best performance
for all classification algorithms. It should be noted that the
performance reported here for 1D CNN is better than the best
performance obtained in [21].

Table IV reports the results from the experiments with
SO762 database. In case of AAD, 1D CNN provided the best
results. In SO762, however, RF classifier provides the best
accuracy and F1 score of 77.12% and 74.07% respectively.
In case of this database, the DeepSpeech features do not
provide improvement over MFCC and FF, in general. This
is possibly because the speech type of SO762 mismatched
with the training data of DeepSpeech model. For example,
DeepSpeech model is not trained with children speech,
while about half of the SO762 is child speech. It could also be
interesting to experiment with embeddings from other layers
of DeepSpeech model and other semi-supervised speech
models such as Wav2Vec [22], HuBERT [23], etc. As some
classes are under-represented in the training data of SO762,

the performance, in general, is not as high as what we have
seen in case of AAD. To the best of our knowledge, this is the
first time fluency classification accuracy has been reported on
this database.

IV. CONCLUSIONS

In this paper, we explore oral fluency classification on two
openly available datasets. We have reported results using 4
types of classifiers and different combinations of 3 types of
features. We have obtained the best reported results so far on
AAD of above 95% accuracy, which we obtained using 1D
CNN classifier and a combination of MFCC, FF and DSEF.
We have also reported, oral fluency classification results on
SO762 dataset for the first time. The DeepSpeech features
represent one aspect of transfer learning technique that we
have used in this study. In the future it will be interesting to
study how we can use transfer learning more effectively for
fluency classification task.
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