
Near-end Intelligibility Improvement Through Voice
Transformation in Transfer Learning Framework

Ritujoy Biswas*, Karan Nathwani*, Vinayak Abrol‡
*Dept. of Electrical Engineering, IIT Jammu, India.

‡Infosys Centre for AI & Dept. of Computer Science and Engineering, IIIT Delhi, India.
Email: ritujoybiswas@gmail.com, karan.nathwani@iitjammu.ac.in, abrol@iiitd.ac.in

Abstract—In recent works, using voice transformation func-
tions (VTF) in optimal shifting of formants has improved near-
end speech intelligibility. Though these VTFs are promising,
they are computationally expensive to optimize and generate
unwanted artifacts during voice modification. Additionally, they
were specific to the environmental condition they were optimized
for. For the applicability of this approach to different languages
without re-optimization, transfer learning (TL) was used to shape
the parameters of VTF to accommodate the target language [1].
However, TL across noises and TL across languages and noises
(simultaneously) was not viable due to the dependency on pitch
information of source and target noises. Hence in this work, a
statistical Gaussian Transformation Function (GTF) is developed
with parameters optimized for specific environmental conditions.
Defined by just three parameters, the optimization time came
down, and the intelligibility surpassed the previously used VTF.
Additionally, GTF allows TL across both noises and languages
simultaneously, with fewer artifacts while shifting the formants.

Index Terms—Speech Intelligibility, Gaussian Transformation
Function, CLPSO, STOI, Transfer Learning

I. INTRODUCTION

The objective of any speech communication system (viz.,
hearing aids, mobile telephony, and public address system)
is to improve the intelligibility of spoken words in noisy
environments. Consider a case where noise is present in
both far-end (talker) and near-end environments (listener).
The impact of far-end noise can typically be eliminated by
mono-aural speech enhancement techniques [2], [3] (not the
focus of this work). In this work, we pre-process the far-
end speech (assuming successful noise suppression in far-end
signal) before being played back in near-end noise [4]–[6].

Most works on near-end speech intelligibility deal with
processing speech characteristics like pitch, formants, average
power, and voiced/unvoiced segments [7]–[9] in a single
microphone setting. However, some recent works are gov-
erned by improving the articulation and co-articulation of
sound features like plosive, vowels, consonants [10], [11],
and phonology [12]. The works in [4], [5] maximize the
speech intelligibility index (SII) by redistributing the energy
according to the perceptual distortion measure and by design-
ing the optimal linear filter, respectively. The authors in [13]
proposed a blind acoustic mask that identified and selected

This work is supported by IIITD-IITD joint research grant (MFIRP-233)
and Infosys Foundation via Infosys Centre for AI, IIIT Delhi.

the speech samples with lower noise-to-speech proportion
by deriving adaptive information using noise statistics. The
aforementioned methods assume that the noise statistics are
known beforehand and perform poorly at low SNRs.

To address this, [14] optimized the shaping parameters of
the voice transformation function (VTF) using Comprehen-
sive Learning Particle Swarm Optimization (CLPSO), which
optimizes the shift in formants to improve intelligibility.
However, it generates significant artifacts due to aggressive
formant shifts in the unvoiced frames [8], which degrades
intelligibility. The changes in languages or noises were also not
addressed, requiring computationally intensive re-optimizing
of the parameters for the new conditions. Hence, [1] proposed
rapidly modifying the parameters optimized for a particular
language and transferring to a different one. The authors
exploited the comparative pitch and formant information of the
target language and the one on which the shaping parameters
were initially optimized (i.e., source). However, transfer across
noises was not possible, and this transfer across languages
favored English as a source language. This directional nature
may be attributed to the differences in phonetic organization
and speech production across languages [15]–[17].

Thus, the major contributions of this work answer the fol-
lowing questions: a) Is there any voice transformation function
that reduces the optimization time of CLPSO while generating
fewer artifacts (Section II)? b) Is it possible to transfer across
noises using some statistically guided transformation function
(Section III)? c) How to achieve transfer across both languages
and noises simultaneously (Section III)? The results and
conclusions are mentioned in Sections V & VI, respectively.

II. CLPSO-BASED INTELLIGIBILITY IMPROVEMENT
USING GAUSSIAN TRANSFORMATION FUNCTION (GTF)

This section highlights our first contribution as the de-
velopment of a statistical Gaussian transformation function
(GTF). The shaping parameters (as shown in Figure 1) are
evaluated using a variant of particle swarm optimization
known as CLPSO. Although, CLPSO has already been used
in our previous work (see [14], [18]) to optimize the VTF of
trapezoidal shape (termed as TTF) having five parameters. In
contrast, the GTF is defined by its three parameters - µ, σ & h.
The mean (µ) and standard deviation (σ) decide the positioning
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Fig. 1. A typical GTF illustrating formant shifting.

and spread of the TF over the spectrum. The maximum shift
in a formant (∆fmax) is given by the height (h) of the GTF.

CLPSO [14] starts with a random set of parameters used
to perform Formant Shifting (FS). The resulting modified
speech is compared with the unmodified speech in terms
of STOI. This comparison gives a sense of ‘fitness’, which
assigns a penalty to the current parameter set. This decides
the direction of movement of the search algorithm to find the
best parameters. This procedure is repeated iteratively, and
the parameters get regularly updated. The resulting shaping
parameters obtained under different environmental conditions
are given in Table 1. After optimization, the shift in each
formant is controlled by these three ‘shaping’ parameters as:

F̂ =

{
F + {∆f = G(F | µ, σ, h)}, if f1 ≤ F ≤ f2
F + {∆f = 0}, otherwise

(1)
where:

f1 = max(0 Hz , [(fH < µ) where h = 0])

f2 = min([(fL > µ) where h = 0] , 4000 Hz)
(2)

’f1’ & ‘f2’ decide the effective range of the GTF. The value
of f1 is decided such that it is either 0 Hz or the highest
frequency (fH ) below the mean (µ) where the effective GTF
starts - whichever is the higher frequency. The value of f2 is
similarly decided, such that it is either 4000 Hz or the lowest
frequency (fL) above the mean (µ) where the effective GTF
ends - whichever is lower. ‘F ’ & ‘F̂ ’ are the original and
shifted formants, respectively. G(F | µ, σ, h) refers to the shift
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Fig. 2. Gaussian approximations of noise spectra with statistics.

TABLE I
GTF PARAMETERS GENERATED VIA CLPSO.

Noise SNR
(dB)

English (EN) French (FR) German (GE)
Mean
(µ)

Height
(h)

Std.
Dev
(σ)

Mean
(µ)

Height
(h)

Std.
Dev
(σ)

Mean
(µ)

Height
(h)

Std.
Dev
(σ)

Babble
(BB)

-8 970.92 487.93 538.33 1421.42 469.44 994.77 294.44 479.11 109.42
-14 1075.43 498.74 661.81 951.78 430.42 998.17 302.84 487.82 122.29
-26 1285.88 498.64 734.02 777.78 461.19 849.67 264.46 491.17 92.61

Car130
(CR)

-8 984.38 497.00 373.09 879.43 439.18 355.10 461.50 473.07 139.59
-14 890.95 493.90 402.73 1328.49 493.02 645.31 460.73 498.98 171.28
-26 1079.43 496.35 682.76 1108.12 436.89 987.59 344.75 498.32 150.36

Street
(ST)

-8 990.66 474.88 527.54 1416.10 498.14 706.18 355.15 489.13 136.22
-14 1007.48 490.52 570.30 1142.14 439.71 983.26 336.34 491.17 137.12
-26 1204.48 499.06 686.39 455.38 481.99 940.51 295.91 488.84 116.17

Train50
(TR)

-8 1018.01 487.78 565.87 837.00 413.46 739.82 293.44 468.67 113.40
-14 1213.24 497.22 674.49 959.28 426.09 956.59 269.10 498.05 92.65
-26 1331.26 498.83 741.32 565.29 499.31 972.54 314.79 496.90 126.24

(∆f ) in formant at the formant location F , when the GTF is
defined by the parameters µ, σ, & h(∆fmax) (Figure 1).

The shifted formants (F̂ ) are then used to reconstruct the
modified signal (ŝ(n)) as given in [14]. After energy nor-
malization of the modified signal with respect to the original
signal (s(n)) and the noise (u(n)), the normalized modified
signal (s̄(n)) and the original signal (s(n)) are both added
with noise to generate s̄u(n) and su(n). STOI is calculated
between {su(n) & s(n)} and between {s̄u(n) & s̄(n)}. If
the STOI for modified speech is more than the unmodified
speech for the same environmental conditions, it indicates an
improvement in intelligibility.

The optimal shaping parameters are given in Table I. These
parameters of GTF have been evaluated through CLPSO for all
combinations of languages: (English (EN) [19], French (FR)
[20] & German (GE) (VoxForge1), noise types: Babble (BB),
Car (CR), Street (ST), & Train (TR) from NOIZEUS database
[21]) and SNR levels (-8dB, -14dB, & -26dB). The variation
in shaping parameters across languages indicates a difference
in the production of utterances across languages [15]–[17].

III. TRANSFER LEARNING VIA GTF

As mentioned in Section II, the optimization of GTF pa-
rameters is specific to a fixed language, noise type, and SNR
level. Even with reduced complexity, it is impractical to re-
optimize for every new combination. To that end, the following
contributions are highlighted as follows: (a) TL across noises
using GTF, (b) combining TL across languages using GTF
(earlier achieved through a trapezoidal transformation function
(TTF) [1]) with TL across noises. Notably, while optimizing
the GTF parameters with CLPSO takes hours, the modification
through TL only takes a few minutes.

A. Transfer learning across noises

In this work, four noises of varying stationarity are con-
sidered (Figure 2): Babble (BB), a car engine (CR), a busy
street (ST), and a train entering a station (TR) [21]. The
TL using TTF required formant and pitch information to
compare source and target environments. Since these realistic
noises have no pitch, to achieve TL across noises, some other
statistical comparative criteria among noises were required,
like mean frequency (µn) and spectral spread (σn). A Gaussian
distribution was fit over the magnitude spectrum of each
noise, and their statistics (µn and σn) were normalized with

1http://www.voxforge.org/home
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respect to CR (lowest values of statistics). Thereafter, the GTF
generated using CLPSO for a source noise is modified for
different target noises using these comparative statistics as
modification factors (keeping language and SNR fixed).

If the modification factor: (µtn−µsn)
µsn

≥ 1, the GTF gener-
ated for the source noise is shifted to the right, as the target
noise is more prevalent higher up the spectrum. Similarly, if
the factor < 1, the GTF is shifted to the left. If the modification
factor: (σtn−σsn)

σsn
≥ 1, the spread of GTF generated for the

source noise is increased, as the target noise is spread over a
larger region of the spectrum. Similarly, if the factor < 1, the
standard deviation of the GTF is reduced. These operations
can be represented as:

µT = µS +
µtn − µsn

µsn
% of µS

σT = σS +
σtn − σsn

σsn
% of σS

(3)

Here, µS (µT ) and σS (σT ) denote the mean and standard
deviation of the GTF in the source (target) noise environment,
respectively. The terms µsn (µtn) and σsn (σtn) denote the
mean and standard deviation of the Gaussian approximation of
the source (target) noise magnitude spectrum, respectively. The
deviation in GTF after TL from direct optimization (CLPSO)
is illustrated in Figure 3. After TL, formant shifting is re-
employed via GTF to obtain the modified signal.

B. Transfer learning across languages & noises

Another contribution of this paper combines the TL across
languages with TL across noises using GTF, which was not
possible using TTF. This is detailed in Algorithm 1.
FSavg

and FTavg
denote the average formant values of

speech in the source and target languages. The mean of the
GTF in the target noise environment (µT ) is handled by
transfer across languages and noises and is decided by the
minimum of two modifications factors: A and B, as given
in Algorithm 1. However, the standard deviation of the GTF
in the target noise environment (σT ) is determined solely by

Algorithm 1: TL across languages and noises
Input : µS , FTavg , FSavg , µtn, µsn, σtn, σsn
Output: µT , σT

1 Evaluate Modification Factor A:
FTavg

FSavg
× µS

2 Evaluate Modification Factor B: (µtn−µsn)
µsn

% of µS
3 if sgn(A) == sgn(B) then /* check sign */
4 µT = µS + min(A,B)
5 else
6 if |B| < |A| then /* compare magnitude */
7 µT = µS + B
8 else
9 µT = µS +A

10 end
11 end
12 Evaluate Modification Factor C: (σtn−σsn)

σsn
% of σS

13 σT = σS + C
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Fig. 3. GTF generated using CLPSO and TL after Left and right shift.

transfer across noise and is decided by the comparison of
the standard deviations of the Gaussian approximations of the
noise spectral distributions (σsn & σtn). After generating the
GTF via TL, formant shifting is re-employed to obtain the
modified signal.

IV. EXPERIMENTAL SETUP AND RESULTS

Experiments were performed using EN, FR, and GE lan-
guages, in BB, CR, ST, and TR noises at -8, -14, and -26 dB
SNR levels. For each language, 80 speech sequences of 2 to
5 seconds were used, and all results were averaged for the 80
sequences. For formant extraction, the speech is first divided
into short-time frames through a Hanning window of 25 ms
duration with 50% overlap with the subsequent frame. Pitch
is evaluated for the frames using the algorithm mentioned in
[22]. In the tables, O+N (M+N) denotes original (modified)
speech in the presence of noise.

A. Significance of GTF over TTF in CLPSO & TL

The transition from TTF to GTF reduced the number of
parameters to be optimized and decreased the optimization
time. Earlier, CLPSO converged in about 68 hours to optimize
5 shaping parameters of TTF. Now, it converged in about 25
hours for 3 shaping parameters of GTF. The comparative study
of FS through TTF and GTF reveals an interesting observation.
Figure 4 shows the shifting of formants using TTF to be much

(a) Formant shifting using TTF

(b) Formant shifting using GTF
Fig. 4. Comparative shift in formants on an English sentence.
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TABLE II
MEAN STOI CHECKED ON BB (SELF, POST TRANSFER LEARNING FROM

CR, ST & TR). LANGUAGE - EN.

SNR
(dB)

Self (CLPSO via GTF on BB) CLPSO on CR, ST & TR and transfer to BB
STOIBB

O+N STOIBB→BB
M+N STOICR→BB

M+N STOIST→BB
M+N STOITR→BB

M+N

-8 0.41 0.55 (+32.27%) 0.48 (+16.16%) 0.54 (+31.27%) 0.55 (+32.26%)
-14 0.31 0.44 (+41.32%) 0.42 (+33.03%) 0.44 (+40.79%) 0.44 (+40.61%)
-26 0.25 0.35 (+36.50%) 0.34 (+34.39%) 0.35 (+36.41%) 0.35 (+36.22%)

TABLE III
MEAN STOI CHECKED ON ST (SELF, POST TRANSFER LEARNING FROM

BB, CR & TR). LANGUAGE - EN.

SNR
(dB)

Self (CLPSO via GTF on ST) CLPSO on BB, CR & TR and transfer to ST
STOIST

O+N STOIST→ST
M+N STOIBB→ST

M+N STOICR→ST
M+N STOITR→ST

M+N

-8 0.52 0.63 (+21.88%) 0.63 (+21.14%) 0.57 (+9.57%) 0.63 (+21.30%)
-14 0.40 0.53 (+32.65%) 0.53 (+32.09%) 0.49 (+22.64%) 0.53 (+32.40%)
-26 0.31 0.41 (+32.77%) 0.41 (+32.72%) 0.41 (+32.59%) 0.41 (+32.53%)

more aggressive (especially for unvoiced frames) than using
GTF for the same audio. The high (low) pulses in the dotted
red line indicate voiced (unvoiced) frames in Figure 4. An
aggressive formant shifting in unvoiced frames is known to
be counterproductive for intelligibility improvement [8]. For
statistical verification, the mean and the standard deviation
of the difference in normalized formant shifts between TTF
and GTF (FSTTF − FSGTF ) were evaluated for the un-
voiced frames of all audio files across all combinations of
the aforementioned languages, noises, and SNR levels. These
mean values lie in the range [0.02:0.41], while the standard
deviation lies in the range [0.02:0.12]. The lesser shift in case
of FSGTF relative to FSTTF indicates the consistently lesser
modification in unvoiced frames using GTF, thereby inducing
much fewer artifacts than TTF.

B. Performance of TL across Noises

The results of TL across noises (keeping language fixed) are
given in Tables II and III, where TL is applied to BB and ST
noises, respectively. For instance, in Table II, GTF is optimized
individually for CR, ST, and TR using CLPSO, and TL is
applied from each of these noises to BB. In general, it was
observed that learning from non-stationary noises performed
better than from relatively more stationary ones. Figure 2
shows the decreasing stationarity of noises from CR to TR.

This trend, however, discontinues as SNR decreases. In
Tables II and III, it can be seen that the improvements in in-
telligibility to the target noise are nearly identical irrespective
of the source noise when the SNR is -26 dB. This indicates
that at very low SNRs, the proposed approach is independent
of the source noise type. It is also evident that the GTF, when
used in the TL framework, works reasonably well, close to
the performance of direct optimization by CLPSO. The values
in brackets represent the percentage improvement in STOI
values with respect to the no modification case (column 2 of
II and III). The bold values in all tables represent the highest
improvement in mean STOI value at that particular SNR.

C. Performance of TL across languages and noises

To illustrate the performance of TL across languages and
noises, we consider 4 cases, as shown in Tables IV to VII.
For instance, in Table IV, the case EN(TR)→FR(BB) indicates
that the CLPSO via GTF is optimized for English (train) and

TABLE IV
TL FOR EN(TR)→FR(BB) AND COMPARISON WITH [1] & [14].

SNR
(dB)

FR(BB) CLPSO (TTF) CLPSO (GTF) TL-Lang (TTF) TL (Lang + Noise) (GTF)
STOINM

O+N STOIFR(BB)
M+N STOIFR(BB)

M+N STOIEN(BB)→FR(BB)
M+N STOIEN(TR)→FR(BB)

M+N

-8 0.44 0.57 (+29.32%) 0.58 (+31.32%) 0.47 (+6.68%) 0.56 (+27.27%)
-14 0.31 0.45 (+42.67%) 0.47 (+51.61%) 0.34 (+9.42%) 0.44 (+41.94%)
-26 0.25 0.34 (+39.57%) 0.35 (+40.00%) 0.27 (+8.00%) 0.32 (+28.00%)

TABLE V
TL FOR EN(TR)→FR(CR) AND COMPARISON WITH [1] & [14].

SNR
(dB)

FR(CR) CLPSO (TTF) CLPSO (GTF) TL-Lang (TTF) TL (Lang + Noise) (GTF)
STOINM

O+N STOIFR(CR)
M+N STOIFR(CR)

M+N STOIEN(CR)→FR(CR)
M+N STOIEN(TR)→FR(CR)

M+N

-8 0.76 0.79 (+4.80%) 0.79 (+4.87%) 0.77 (+0.19%) 0.79 (+3.94%)
-14 0.62 0.70 (+12.99%) 0.70 (+13.57%) 0.63 (+2.05%) 0.70 (+12.90%)
-26 0.39 0.53 (+36.74%) 0.54 (+38.85%) 0.42 (+7.85%) 0.53 (+35.89%)

TABLE VI
TL FOR GE(TR)→EN(BB) AND COMPARISON WITH [1] & [14].

SNR
(dB)

EN(BB) CLPSO (TTF) CLPSO (GTF) TL-Lang (TTF) TL (Lang + Noise) (GTF)
STOINM

O+N STOIEN(BB)
M+N STOIEN(BB)

M+N STOIGE(BB)→EN(BB)
M+N STOIGE(TR)→EN(BB)

M+N

-8 0.41 0.55 (+32.30%) 0.55 (+32.27%) 0.39 (-5.27%) 0.51 (+22.20%)
-14 0.31 0.45 (+42.73%) 0.44 (+41.32%) 0.33 (+4.12%) 0.38 (+22.54%)
-26 0.25 0.36 (+42.31%) 0.35 (+36.50%) 0.27 (+5.75%) 0.29 (+15.82%)

TABLE VII
TL FOR FR(TR)→EN(CR) AND COMPARISON WITH [1] & [14].

SNR
(dB)

EN(CR) CLPSO (TTF) CLPSO (GTF) TL-Lang (TTF) TL (Lang + Noise) (GTF)
STOINM

O+N STOIEN(CR)
M+N STOIEN(CR)

M+N STOIFR(CR)→EN(CR)
M+N STOIFR(TR)→EN(CR)

M+N

-8 0.73 0.76 (+4.11%) 0.76 (+4.72%) 0.62 (-15.07%) 0.70 (-4.11%)
-14 0.61 0.68 (+11.48%) 0.68 (+12.69%) 0.54 (-11.48%) 0.61 (0%)
-26 0.39 0.52 (+33.33%) 0.53 (+35.18%) 0.43 (+10.26%) 0.46 (+17.95%)

TL is applied to French(babble). Since TR and BB noises
have similar spectra (refer Figure 2), TL from TR to CR is
considered in Table V and VII to remove ambiguity. Column
2 in Tables IV to VII indicate the STOI of no modification
case. Column 3 in these Tables indicates the results of TTF op-
timized using CLPSO [14], and column 4 indicates the results
of GTF optimized using CLPSO. Column 5 shows the results
of TL across languages using TTF [1], and column 6 indicates
the results of TL across languages and noises using GTF. It can
be seen that similar to TL across noises, TL across languages
and noises produces results close to the performance of direct
optimization by CLPSO. Throughout Tables IV to VII, it is a
noteworthy observation that while optimization of GTF using
CLPSO leads to minor improvements in intelligibility over
TTF, the performance boost achieved by TL across languages
and noises is significantly more than TL across languages
alone. Due to rounding off, some % changes might differ
though the difference in values appears the same.

D. Directional in-dependence during TL across languages
In [1], TL across languages exhibited a directional nature in

terms of preference for the source language. The performance
of TL using English as a source language was better than in
other cases. When French or German were used as source lan-
guages, the performance dropped significantly, often degrading
intelligibility instead of improving it. This behavior may be
due to varying degrees of phonetic richness and differences in
speech production across languages [15]–[17].

However, simultaneous TL across languages and noises
compensates for this behavior. This is probably because accli-
matizing to changes in noise results in a higher degree of intel-
ligibility improvement than adapting to changes in language.
It may also be attributed to the statistical GTF used in the TL

279



TABLE VIII
MEAN OPINION SCORES FOR GE(TR)→EN(BB).

SNR MOSEN
O MOSEN(BB)

(O+N)
MOSEN(BB)

(M+N)
MOSEN(BB)

(M+N)
MOSGE(TR)→EN(BB)

(M+N)

NM NM CLPSO (TTF) CLPSO (GTF) TL (Lang + Noise)
-8 5 2.1000 2.4739 3.4594 3.3083

-14 5 1.7782 2.1565 2.2042 2.3478
-26 5 1.5304 1.9217 1.6875 1.5739

framework. This is evident through the analysis presented in
Tables VI and VII. It can also be seen that in most cases, the
performance that was degrading in TL across languages, im-
proved markedly through TL across languages and noises. For
additional results, see https://github.com/Ritujoy/UTL_results.

E. Mean opinion scores (MOS) evaluation
We collected the opinion of 23 people aged 18 to 27 years

on cases of TL, where the target language was English, as
most listeners were proficient only in English. Results of the
case: GE(TR)→EN(BB) are given in Table VIII. The listeners
graded the intelligibility of the audio files on a scale of 1 to 5
(1 being negligibly intelligible and 5 being fully intelligible).
First, 10 clean audio files were played for the listeners to set
the reference (MOSEN

O ). Thereafter, they were given the same
signals mixed with noise (MOSEN(BB)

(O+N)). Next, their opinions
were recorded for the case where the signals were modified
through direct optimization using CLPSO (TTF & GTF) and
mixed with noise (MOSEN(BB)

(M+N)). Finally, their opinions were
recorded for the signals modified after TL, and mixed with
noise (MOSGE(TR)→EN(BB)

(M+N) ). It can be seen that the MOS values
through TL across languages and noises are close to the direct
optimization using CLPSO (GTF). As SNR increases, the
artifacts become more prominent, especially for TTF than in
GTF. These MOS values are corroborated by Table VI.

V. CONCLUSIONS

The proposed work improves near-end speech intelligibil-
ity in varying languages, noises, and SNRs. The Gaussian
Transformation Function (GTF), which replaced the trape-
zoidal transformation function (TTF) in the formant shifting
(FS), reduced the time complexity due to the optimization of
fewer parameters. The performance of GTF surpassed TTF
and generated fewer artifacts through restrained modifications
in unvoiced frames. Transfer learning (TL) across noises
was made possible due to the statistical shape (Gaussian)
of the voice transformation. Finally, through transfer across
languages and noises simultaneously, intelligibility was ex-
tensively improved, while mitigating the directional nature
of TL across languages. The proposed work has immense
applications, especially in cases where rapid intelligibility
enhancement across varying conditions is more critical than
maximizing intelligibility for one fixed environment.
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