
Facetron: A Multi-speaker Face-to-Speech Model
based on Cross-Modal Latent Representations

Seyun Um, Jihyun Kim, Jihyun Lee, Hong-Goo Kang
Dept. of Electrical and Electronic Engineering Yonsei University Seoul, Korea

Abstract—In this paper, we propose a multi-speaker face-to-
speech waveform generation model that also works for unseen
speaker conditions. Using a generative adversarial network
(GAN) with linguistic and speaker characteristic features as
auxiliary conditions, our method directly converts face images
into speech waveforms under an end-to-end training framework.
The linguistic features are extracted from lip movements using
a lip-reading model, and the speaker characteristic features are
predicted from face images using a face encoder trained through
cross-modal learning with a pre-trained acoustic model. Since
these two features are uncorrelated and controlled independently,
we can flexibly synthesize speech waveforms whose speaker
characteristics vary depending on the input face images. We show
the superiority of our proposed model over conventional methods
in terms of objective and subjective evaluation results. 1

Index Terms—GAN-based audio-visual model, Lip-reading,
Multi-speaker speech generator

I. INTRODUCTION

Automated lip-reading (ALR) is the task of predicting lin-
guistic information from a sequence of visual lip movements.
It has become an essential technology for communications for
hearing-impaired people, silent communications for keeping
privacy, and so on [1], [2]. Especially, there have been several
attempts to generate high-quality speech waveforms directly
from lip movements and face images based on deep learning
frameworks [3]–[6].

To synthesize human voices from silent lip movements and
face images, one simple approach is to concatenate a text-to-
speech (TTS) module to a module that converts either face
or lip images to contextual variables. However, this approach
has a limitation in that unavoidable recognition errors at the
contextual conversion module degrade the synthesis perfor-
mance of the following speech synthesis module. Thus, there
have been several attempts to estimate acoustic information
rather than phonetic information as intermediate features for
waveform synthesis, which have been shown to improve the
robustness of the whole synthesis framework. These acoustic
features include vocoding parameters such as pitch, voicing
information, and spectral parameters. Meanwhile, Vougioukas
et al. [3] proposed a direct generation method of speech
waveforms from a sequence of lip images based on GAN
framework. Though they were able to generate more realistic
and intelligible speech in both speaker-dependent and speaker-
independent settings thanks to the GAN approach, there is still
room for improvements of the quality of the generated speech.

1The demo samples of the proposed and other models are available at
https://sam-0927.github.io/

In this paper, we use a GAN-based method to generate
raw speech waveforms from lip and face image sequences.
We obtain two intermediate features: contextual information
from lip movements and speaker characteristic-related features
from face images. To estimate the speaker characteristic-
related acoustic features from face images, we introduce a
cross-modal learning method that utilizes the cosine similarity
between embeddings obtained from face images and prosody
embeddings obtained from a pre-trained prosody-extracting
module [7]. Both contextual and speaker-related acoustic em-
beddings are used as conditional features for a GAN-based
waveform generation module. Based on various experiments
using small and large-scale datasets, we show that our model
successfully generates high-quality speech even for unseen
speakers.

Our main contributions of this paper are as follows: 1)
We introduce various training criteria to improve the qual-
ity of synthesized speech in a multi-speaker face-to-speech
generation scenario. 2) Our model extracts linguistic and
speaker characteristic-related embeddings independently; thus,
it is possible to modify speaker characteristic information
without changing the linguistic information. 3) To reliably
extract speaker characteristic-related information, we propose
an effective cross-modal learning technique using a pre-trained
prosody model. Since the prosody model was pre-trained on a
database with a large number of speakers, we can successfully
predict the acoustic information for many speakers even if
they were unseen during training. 4) We use a well-established
GAN-based generator to synthesize high-fidelity speech from
facial movements. Notably, the discriminator module includes
an effective discrimination criterion motivated by a perceptual
quality metric, which induces the generated speech to become
more natural.

II. RELATED WORK

A. Lip-to-speech synthesis

Lip-to-speech algorithms consist of two main stages: the
extraction of intermediate features from input images and the
generation of speech waveforms from them. Vid2Speech [6]
and Lipper [8] extract line spectrum pairs (LSPs) from face
images and synthesize speech waveforms using linear pre-
diction (LP) synthesis. However, since low order LP co-
efficients do not include sufficient acoustic information for
speech synthesis, the generated speech sounds are often not
natural. Vid2voc [9] adopts the WORLD vocoder [10] to
improve speech quality. To further improve intelligibility, this
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method jointly trains a visual speech recognition network and
the vocoder parameter prediction network using a multi-task
learning framework.

Another line of approaches is predicting spectrograms or
mel-spectrograms, which contain more detailed acoustic in-
formation, and using them as intermediate features for speech
waveform generation. One example of this approach is an
extension of Vid2Speech [6] which uses facial movements
as additional inputs to predict such spectrograms. Another
example, Lip2AudSpec [11], uses a pre-trained autoencoder to
compress input embeddings and reconstruct spectrograms. By
utilizing a well-established sequence-to-sequence architecture,
Prajwal et al. [4] develop Lip2Wav that learns the speaking
styles of a small number of target speakers. Vougioukas et
al. [3] directly generate raw speech waveforms using adver-
sarial training, but their improvements are not particularly
significant because they use a simple architecture of a stack
of transposed convolutions for a generator module.

Our proposed model defines linguistic and acoustic features
as intermediate features. We extract those features using two
feature extractors: a lip-reading network that predicts linguistic
features and a face encoder that predicts speaker characteris-
tics. We also utilize the high-synthesis ability of a GAN-based
neural vocoder to generate natural speech waveforms.

B. Face-speech cross-modal learning

Cross-modal features between face and speech have been
used to improve the performance of various speech-related
tasks such as speech separation, speech enhancement, and
speaker recognition. Due to their matching correspondence,
the features can be also used for a domain transformation
task between face and speech. For example, Speech2Face [12]
synthesizes a face image given speech segments as input.
In Face2Speech [5], a pre-trained multi-speaker TTS system
synthesizes speech given speaker embeddings extracted from
face images. Our method uses a metric-learning approach to
train our face encoder to predict similar speaker characteristics
from the features extracted from face images.

III. PROPOSED MODEL

Figure 1 illustrates the system architecture of our pro-
posed model, which consists of a mel-spectrogram generator
and a neural vocoder. Our mel-spectrogram generator, which
we call Facetron, transforms face and lip images into mel-
spectrograms. It consists of three modules: a lip encoder, a
face encoder, and a decoder. We then use a high-quality neural
vocoder HiFi-GAN [13] to synthesize waveforms from the
generated mel-spectrogram. Unlike a TTS model which has a
one-to-many mapping problem, Facetron doesn’t suffer from
the mismatch of time alignment because the frame rate of
face images is fixed. Detailed descriptions of each module in
Facetron are provided in the following paragraphs.
Lip encoder. Lip encoder is a feature extractor that outputs
lip embeddings given a sequence of lip images with size
144× 144 cropped from face images. The lip encoder is able
to predict contextual and linguistic information because it is

trained with additional full-connected layers which predict
actual graphemes from the output of the lip encoder. The
design of the lip encoder is based on LipNet [1]. It consists of a
3-layer 3D CNNs, a residual block with channel-wise dropout
and spatial pooling, a 2-layer bidirectional gated recurrent
unit (Bi-GRU), and 2 fully connected layers. The residual
block consists of two 3D CNNs that have 96-32 channels
with the same kernel size of (3, 3, 3), a stride size of (1,
1, 1), and a padding size of (1, 1, 1). These bottleneck blocks
play an important role in improving performance by extracting
linguistic features. The output is multiplied by a scale factor
of 0.2. Then, all outputs of 3D CNNs blocks are fed to the
Bi-GRU module. We use connectionist temporal classification
(CTC) loss [14] as the criterion for recognizing characters.
Face encoder. Our proposed model targets a multi-speaker
system, which can synthesize different speech depending on
speaker identities even when the linguistic information is the
same. Thus, we define face embedding, which is the output
of face encoder, to represent speaker characteristics and use
it as a speaker-dependent feature for multi-speaker synthesis.
We design the face encoder based on FaceNet [15], which is
composed of several residual blocks consisting of 2D CNNs
with pooling layers, dropout, and batch normalization. We
randomly select one image from the 75 face images and use it
as input for the face encoder in order to avoid the extraction
of contextual information from a sequence of lip images.
Decoder. Decoder generates mel-spectrograms given the lip
and face embeddings. We use a light version of HiFi-GAN [13]
as the decoder. The three main modules of HiFi-GAN form
the backbone of our decoder architecture: multi-receptive
field fusion (MRF) for a generator, multi-period discriminator
(MPD), and multi-scale discriminator (MSD). We use modified
configurations of the generator and the discriminator archi-
tecture to fit the dimension of the input embedding and the
mel-spectrograms, respectively. The upsampling rates of the
generator are set to (1, 1, 2), the kernel sizes to (16, 16, 4),
and the initial channel dimension to 640. The periods used in
the MPD are (2, 3, 5) and the sizes of the convolutional layers
in the MSD are (80, 160, 240, 480, 960, 960).

To sum up, the generation process of Facetron is represented
as follows:

lk = Elip(Xk), f = Eface(X) (1)
ck = concat(lk, f) (2)

M̂ = Gdecoder(C), C ∋ c1, .., ck, ..., cL (3)

The lip embedding lk of the k-th frame is extracted from the
lip encoder Elip(·). The face embedding f is obtained by the
face encoder Eface(·) using a face image X . The input of the
decoder C is a sequence of ck’s along the total L frames, each
of which is a concatenation of lk and f . Finally, the decoder
predicts mel-spectrogram M̂ .

IV. TRAINING AND INFERENCE

In this section, we explain a reliable end-to-end training
method for the aforementioned modules and a criterion for
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Fig. 1. System architecture of the proposed model. The input to the
waveform generator (HiFi-GAN) is a concatenation of face embedding and
lip embedding generated by the face encoder and the lip encoder, respectively.
Gray block refers to pre-trained module.

selecting face embeddings in inference.

A. Training objectives

The overall loss function of the proposed model is as
follows:

Ltotal = LDecoder + LCS + LV ocoder, (4)

where LDecoder, LCS , and LV ocoder are loss functions for the
decoder, the face encoder, and the neural vocoder, respectively.
Note that the lip encoder is trained beforehand because the lip-
reading task requires too much time for training. LDecoder is
used to generate high-quality mel-spectrogram and includes
generator loss, discriminator loss, and feature mapping loss as
in [13].

One important issue in training our model is the way of
providing speaker-related information to face embeddings. We
introduce prosody information as a target for face embeddings
because the speaker identity is strongly related to the speaker’s
prosody. We extract prosody embeddings from a pre-trained
prosody encoder in Mellotron [7] after fine-tuning it to utilize
its general prosody modeling capability. We adopt a cosine
similarity loss LCS between the prosody embedding and the

face embedding as a criterion for the face-prosody matching
task:

LCS = CS(f, p), (5)
f = Eface(X), p = Eprosody(M),

where f is the face embedding obtained by passing a face im-
age X through the face encoder Eface(·), and p is the prosody
embedding obtained by passing mel-spectrogram M through
the fine-tuned prosody encoder Eprosody(·). For stable training
of the face encoder, we train the face encoder separately from
Facetron before the end-to-end training the whole model until
the cosine similarity loss does not decrease.

B. Face embedding selection

During inference, we choose face embeddings using the
Inter-to-Intra category distance over I2I method [16] instead
of random selection to accurately represent the target speaker’s
voice. First, we calculate the average of each face embedding
from the target speaker generated by the face encoder, and
also set the average of the face embeddings from a different
(negative) speaker whose face embeddings are located closest
to the target speaker’s embedding. Then, we apply the I2I
method as follows:

f I2IT =
1

2
argmax

f

∥fAver
N − fAver

T ∥2
Ex∈XT

∥f − x∥2
, (6)

where f I2I
T denotes the selected face embedding from the

target speaker. XT , fAve
N , and fAve

T denote the face em-
beddings belonging to the target speaker, and average face
embeddings of the negative and target speakers, respectively.
Using this method, Facetron is able to generate high quality
mel-spectrograms not only for seen speakers’ voices, but also
those of unseen speakers’.

V. EXPERIMENTS AND RESULTS

In this section, we compare the performance of the proposed
model to that of conventional models [3], [4], [9] in terms
of synthesized speech quality, linguistic information accuracy,
and speaker matching accuracy. We use the GRID dataset [17]
for experiments, which contains high-quality audio and facial
recordings of 1,000 sentences per speaker, spoken by 33
speakers (17 males, 16 females). The sampling rate of the
audio signals is 16,000 Hz, and the duration of each sentence
is 3 seconds. We train and evaluate our model on a small
dataset (4 speakers) scenario and a large dataset (29 speakers)
scenario to show the effectiveness of our method when trained
on different amounts of data.

A. Small dataset

A small dataset consists of four speakers (s1, s2, s4, s29),
which is the same dataset setup as reference models such
as Voc-based [9], GAN-based approach [3], and Lip2Wav
model [4]. We split the small dataset into training, validation,
and test sets at ratios of 90%, 5%, and 5%, respectively, which
is an identical setup to previous works. The output of the Voc-
based and GAN-based approach are downsampled to 16 kHz
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TABLE I
OBJECTIVE AND SUBJECTIVE RESULTS OF THE PROPOSED AND

REFERENCE MODELS FOR SMALL DATASET. THE BEST RESULTS ARE
SHOWN IN BOLD.

Objective Subjective
NISQA↑ CER↓ WER↓ MOS↑

GAN-based 2.79 9.1 18.3 1.42
Voc-based 2.63 6.2 11 2.19
Lip2wav 3.39 8 15.4 3.57
Facetron 3.47 7.1 13.7 3.69

TABLE II
OBJECTIVE AND SUBJECTIVE RESULTS OF THE PROPOSED AND

REFERENCE MODELS FOR LARGE SEEN/UNSEEN DATASET. THE (1ST , 2ND )
AND (3RD , 4TH , 5TH , 6TH ) ROWS ARE RESULTS FOR SEEN AND UNSEEN

SPEAKER CASE, RESPECTIVELY. SMOS OF SEEN SPEAKER CASE IS ABOUT
SPEAKER SIMILARITY AND UNSEEN SPEAKER CASE IS FOR GENDER

SIMILARITY.

Objective Subjective
NISQA↑ CER↓ WER↓ MOS↑ SMOS↑

Lip2wav 3.60 7.4 11.6 3.20 3.53
Facetron 3.44 6.9 10.7 3.74 4.16
Lip2wav 3.19 12.5 24.1 2.83 94.56%
Facetron 3.24 7.7 14.7 3.87 99.22%
VCVTS - - - 2.31 -
Facetron - - - 4.19 -

TABLE III
OBJECTIVE AND SUBJECTIVE RESULTS OF THE PROPOSED MODEL FOR

DISENTANGLEMENT.

Objective Subjective
NISQA↑ CER↓ WER↓ MOS↑ SMOS↑

Facetron 3.41 8.3 14.3 3.57 3.8

(from 50KHz) to match the frequency range of the others. As
in our model, we employ a HiFi-GAN vocoder for Lip2Wav.

In lip-to-speech applications, it is crucial to synthesize
speech waveforms that convey linguistic information accu-
rately. To evaluate this performance, we performed an au-
tomatic speech recognition (ASR) task with the synthesized
speech waveforms under the framework used in [18]. The
ASR model achieves 5.6% character error rate (CER) and
8.3% word error rate (WER) for original recorded speech.
Table I shows the recognition accuracy. Our model achieves
the WER of 13.7%, which is lower than the WER of the GAN-
based and Lip2Wav. Although the Voc-based model shows a
higher ASR performance than Facetron, its subjective quality,
i.e. mean opinion score (MOS), is significantly lower than
Facetron, which means that our model can synthesize natural
speech while maintaining the linguistic contents. Overall, the
results show that the speech synthesized by our model contains
more accurate linguistic information than the baseline models.

To objectively measure overall speech quality, we compute
non-intrusive objective speech quality assessment (NISQA-
TTS) [19] scores. Our model outperforms the baseline models
with a score of 3.47, showing that it synthesizes much higher
speech quality than others when trained on a small dataset. We

also conducted MOS tests on the speech signals synthesized by
Facetron and other baseline models. We randomly selected ten
audio samples per speaker, that is, a total of 40 evaluation sam-
ples per model. Fifteen subjects participated in the MOS test;
they were asked to evaluate the perceptual quality of the audio
samples. Compared to the baseline models, Facetron achieves
significantly higher MOS scores than baselines, which is the
same result to NISQA.

B. Large dataset

Large dataset utilizes the full dataset with all 33 speakers.
During training, we excluded four speakers (s1, s2, s4, s29).
With these four speakers’ data, we evaluated the performance
in unseen speakers’ conditions. Table II shows the results.
Facetron achieves the MOS scores of 3.74 and 3.87 for seen
and unseen data, respectively. Notably, the results are almost
identical between the seen and unseen cases, while Lip2Wav
demonstrates degraded quality in the unseen case. These re-
sults show that Facetron generates high-quality speech signals
for both seen and unseen speakers. In addition, Facetron is
better than Lip2Wav in terms of WER; Facetron achieves
10.7% and 14.7% WER for seen and unseen speakers while
Lip2Wav achieves 11.6% and 24.1%, respectively.

We also evaluated our model by conducting subjective
speaker and gender recognition on synthesized speech sam-
ples. We conducted similarity MOS (SMOS), where subjects
were asked to estimate how similar the synthesized and
recorded audio samples were from the perspective of speaker
and gender, respectively. The performance of these similarity
measurement tasks is directly related to the capability of
the face encoder. For seen speakers, our model obtains an
SMOS score of 4.16 and Lip2Wav obtains 3.53 on the speaker
similarity task. Therefore, we can say that our face encoder
encodes speaker characteristic information for seen speakers
much better than Lip2Wav. For unseen speakers, we performed
a gender recognition task because it was not possible to
recognize unknown speakers’ identities. Our model achieves
much higher accuracy than Lip2Wav (99.22% vs. 94.56%).

We also tried to compare the performance of our model with
those of more recently published models such as VCVTS [20].
However, it was challenging to conduct this comparison be-
cause there was no official code available. Therefore, we
performed a simple MOS test using a small number of
speech samples taken from the official VCVTS demo page.2

We downloaded three generated samples of unseen speakers
and compared their quality with our generated samples of
corresponding speakers. The speaker split setting of VCVTS is
the same as ours as described in Section V-B. Eleven subjects
were guided to evaluate the perceptual quality of the generated
audio samples. Our model achieved an average MOS score of
4.19 while VCVTS only obtained 2.31, as shown in Table II.
Although this was a listening test with only a small number of
samples, the result supports the claim that our proposed model
has significantly superior performance to VCVTS.

2https://wendison.github.io/VCVTS-demo/
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Fig. 2. Face embeddings extracted from Facetron with CS loss (left) and
without it (right). Face embeddings of the same speaker are represented using
the same type of color and marker and connected by a translucent line. Unseen
speaker’s face embedding has a black border.

VI. ABLATION STUDY

A. Disentanglement

To verify whether linguistic and speaker identity features are
successfully disentangled, we randomly synthesized 30 speech
samples using lip and identity features from different speakers
on the large dataset. As shown in Table III, our model achieves
8.3% CER, 14.3% WER, and 3.41 NISQA on objective
metrics, and 3.57 MOS and 3.8 SMOS on subjective metrics.
This result means that our model still shows high performance
even though we used linguistic and speaker identity features
from different speakers. This verifies that our method is able
to effectively extract and disentangle linguistic and acoustic
information.

B. Effect of CS loss

The face encoder learns encoding speaker-related informa-
tion from face images by training with the cosine similarity
(CS) to prosody embeddings, as described in Section IV. Fig-
ure 2 illustrates the t-SNE plots to demonstrate the advantage
of using CS loss. Face embeddings generated by Facetron
with CS loss form clear speaker clusters while embeddings
from the model without CS loss form distributed clusters.
The effectiveness of CS loss is verified when synthesizing
unseen speakers’ speech. Without CS loss, the model can fail
to synthesize a consistent speaker identity in a single speech
sample. For example, the front part of the sentence can be
spoken in a male voice while the back part can be spoken
in a female voice, which is not desireable. Examples of these
samples has been uploaded to the demo page.

VII. CONCLUSION

In this paper, we proposed Facetron, a model for synthe-
sizing speech from images of facial movements. Our model
combines a lip embedding that contains linguistic information
and a face-driven embedding that contains speaker informa-
tion and is trained using a cross-modal learning framework.
Experiments show that our model is able to synthesize more
natural and intelligible speech compared to previously pro-
posed methods.
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