
Upsampling Layers for Music Source Separation
Jordi Pons, Joan Serrà, Santiago Pascual, Giulio Cengarle, Daniel Arteaga, Davide Scaini

Dolby Laboratories

Abstract—Upsampling artifacts are caused by problematic
upsampling layers, and due to spectral replicas that emerge
while upsampling. Also, depending on the used upsampling
layer, such artifacts can either be tonal (additive high-frequency
noise) or filtering artifacts (substractive, attenuating some bands).
We investigate the practical implications of having upsampling
artifacts in the resulting audio, by studying how different artifacts
interact and assessing their impact on the models’ performance.
To that end, we benchmark a large set of upsampling layers
for music source separation: different transposed and subpixel
convolution setups, different interpolation upsamplers (including
two novel layers based on stretch and sinc interpolation), and
different wavelet-based upsamplers (including a novel learnable
wavelet layer). Our results show that filtering artifacts, associated
with interpolation upsamplers, are perceptually preferrable, even
if they tend to achieve worse objective scores.

Index Terms—synthesis, artifacts, music, source separation.

I. INTRODUCTION

Upsampling layers are widely used in audio synthesis. They
are known to introduce undesired upsampling artifacts [1]–
[5], which can be categorized as filtering or tonal artifacts [3].
Filtering artifacts attenuate some bands and are known to “de-
emphasize high-end frequencies” [3], while tonal artifacts in-
troduce additive periodic noise percieved as a “high-frequency
buzzing noise” [2] that “can be devastating to audio generation
results” [1]. A full, in-depth description of why upsampling
artifacts occur is given in [3]. Here, we go one step further and
investigate which strategies can work to palliate such artifacts.

In our work, we consider transposed convolutions [1], [5],
[6], interpolation upsamplers [2], subpixel convolutions [4],
and wavelet-based upsamplers [7]. Transposed and subpixel
convolutions can introduce tonal artifacts [1], [2], [5], whereas
interpolation and wavelet-based upsamplers can produce filter-
ing artifacts [3] (see section II). In addition, recent research
shows that tonal and filtering artifacts interact with the spectral
replicas introduced via the bandwidth extension performed by
each upsampling layer [3]. In light of that, which upsampling
layers are preferable? We discuss their characteristics and how
they interact with spectral replicas. A gentle introduction to the
role of spectral replicas in neural upsampling is in [3]. Here,
we dive deeper into the topic to discuss its implications both
theoretically (section II) and, for the first time, empirically
with metrics and a subjective test (sections III and IV), by con-
sidering the challenging task of music source separation [2],
[6], [15].

We extensively benchmark existing upsampling layers to
understand their behavior, and investigate two additional
strategies to mitigate upsampling artifacts: (i) employing post-
processing networks as an “a posteriori” mechanism to palliate
upsampling artifacts [1], [8], and (ii) using normalization

layers as a way to reduce spectral replicas of signal offsets
(a source of artifacts, discussed in section II.E). Finally, we
also experiment with upsampling layers that, to the best of our
knowledge, have never been used for audio synthesis: stretch
and sinc interpolation layers, and learnable wavelet layers. Our
results show that filtering artifacts are perceptually preferable
than tonal artifacts, and that nearest-neighbor interpolation can
provide better separation quality than other upsampling layers.

II. OVERVIEW OF UPSAMPLING LAYERS AND ARTIFACTS

A. Transposed convolution and tonal artifacts

Transpososed convolutions can introduce undesired tonal
artifacts due to (i) their weights’ initialization, (ii) the loss
function, and (iii) overlap issues [3], [9]. The weights’ ini-
tialization issue (i) is caused because randomly initialized
transposed convolutional filters repeat accross time [3], [5].
This issue is commonly addressed via learning from data,
since training may help mitigating the tonal artifacts caused by
this problematic initialization. Loss function issues (ii) emerge
when convolutional neural networks (CNNs) are used for loss
calculatioin, since it involves a transposed convolution step
during backpropagation [9]. These issues can be avoided by
just not using adversarial [1], [5] or deep feature losses [10].
Finally, overlap issues (iii) can be mitigated by carefully
choosing the filter-length and stride [5]. In particular, one
can use no overlap (length=stride) and full overlap (length is
multiple of the stride) setups [3]. Yet, even under these setups,
the loss function and the weights initialization issues remain.
One can observe how tonal artifacts emerge after (random)
initialization in Fig. 2 (a, b, c).

B. Interpolation upsamplers and filtering artifacts

Interpolation upsamplers first interpolate a given feature
map and then employ a learnable convolution [9]. They do not
cause tonal artifacts, but can introduce filtering artifacts [3]
caused by the (fixed, non-learnable) frecuency response of
the interpolation, see Fig. 1 (e, f, g). Filtering artifacts vary
depending on the frequency response of each interpolation:
– Stretch interpolation upsamples the signal with zeros. Its
frequency response is Xstretch byM (ejω) = X(ejωM ), where M
is the upsampling factor. Hence, it scales the frequency axis by
M , exposing the spectral replicas without further transforming
the signal. In other words: its flat frequency response does not
introduce filtering artifacts, see Fig. 1 (h).
– Sinc interpolation can be implemented as a stretch inter-
polation + convolution with a sinc filter [11]. It is known as
bandlimited interpolation since the frequency response of a
sinc is a low-pass filter that removes the introduced spectral
replicas, see Fig. 1 (e).

311ISBN: 978-9-4645-9360-0 EUSIPCO 2023



0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)
-100dB

-50dB

+0dB

(a) Transposed CNN:
no overlap (length=8)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(b) Transposed CNN:
partial overlap (length=9)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(c) Transposed CNN:
full overlap (length=4)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(d) Subpixel CNN
(filter length=9)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(e) Interpolation:
sinc

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(f) Interpolation:
linear

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(g) Interpolation:
nearest neighbor

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(h) Interpolation:
stretch

Fig. 1. Input: white noise at 8kHz. Upsampling (↑4) layers can introduce filtering artifacts that attenuate some bands. Only (e, f, g) “horizontal valleys”
are considered filtering artifacts, because are caused by non-learnable interpolations. Hence, (e, f, g) layers would introduce filtering artifacts even after
training—while the rest of “horizontal valleys” (a, b, c, d) can change during training. Transposed CNNs with stride=4.

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(a) Transposed CNN:
no overlap (length=8)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(b) Transposed CNN:
partial overlap (length=9)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)
-100dB

-50dB

+0dB

(c) Transposed CNN:
full overlap (length=4)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(d) Subpixel CNN
(filter length=9)

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(e) Interpolation:
sinc

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(f) Interpolation:
linear

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(g) Interpolation:
nearest neighbor

0 1 2 3
time (seconds)

0
4000
8000

12000
16000

fr
eq

ue
nc

y 
(H

z)

-100dB

-50dB

+0dB

(h) Interpolation:
stretch

Fig. 2. Input: ones (constant) at 8kHz. Upsampling (↑4) layers can introduce tonal artifacts (horizontal lines). Transposed CNNs with stride=4.

– Nearest neighbor interpolation: can be implemented as
stretch interpolation + convolution with a rectangular filter [3].
Since the frequency response of a rectangular filter is a sinc,
its filtering artifacts attenuate (some) high-frequency bands,
see Fig. 1 (g).
– Linear interpolation can be implemented as stretch inter-
polation + convolution with a triangular filter [3]. Since the
frequency response of a triangular filter is a sinc2, its filtering
artifacts attenuate the high-frequency bands even more than
the nearest neighbor interpolation, see Fig. 1 (f, g).

Note that the interpolations we have just discussed (e.g.: sinc
or linear, explained as stretch interpolation + non-learnable
convolution) are typically followed by a learnable convolution.
To the best of our knowledge, we are the first to explore stretch
and sinc interpolation layers for neural audio synthesis.

C. Subpixel convolution and tonal artifacts

Subpixel convolution is based on convolution and re-
shape [3], [4], [12]. The convolution upsamples the signal
along the channel axis, and the reshape operation is based
on periodic shuffling—that reorders the convolution’s output
to match the desired output shape, see Fig. 3. It can introduce
tonal artifacts due to the periodic shuffle operator, since it

convolution

(upsampling)

reshape

(periodic shuffle)

in_channels = 3

length = 6

out_channels·factor = 2·2 = 4

length = 6

out_channels = 2

length·factor = 6·2 = 12

Fig. 3. Subpixel convolution: reshaping can introduce tonal artifacts.

interleaves consecutive samples out of convolutional filters
having different weights (depicted in Fig. 3 as colored period-
icities). Such periodicities are caused by the (different) dynam-
ics each feature map can exhibit, since interleaving activations
with different energies leads to periodic (tonal) artifacts [13].
This can be particularly noticeable after initialization, since
feature maps can exhibit different dynamics due to the random
weights of the filters as in Fig. 2 (d).

D. Wavelet-based upsamplers and filtering artifacts

Cascaded filter banks are often used to implement multi-
resolution discrete wavelet transforms [14] (Fig. 4). One
interesting property of wavelets is that they allow for perfect
reconstruction. Thus meaning that one can recover the input
signal after following the analysis/synthesis steps. Hence,
no additive (tonal) or substractive (filtering) artifacts emerge
after downsampling/upsampling, but the perfect reconstruction

312



Ha[n]

La[n]

analysis / downsampling

x 2

2 Ha[n]

La[n]

2

2

2

2

Hs[n]

Ls[n]

2

2

Hs[n]

Ls[n]

x

synthesis / upsampling

detail

coarse
signal #1

signal #1

detail
signal #2

coarse
signal #2

coarse
signal #1

Fig. 4. Cascaded wavelets: with low-pass La[n], Ls[n] and high-pass Ha[n],
Hs[n] filters. ↓2 operator discards every other time step. ↑2 operator refers
to stretch interpolation, upsampling with zeros.

property only holds in the absence of any processing in the
wavelet domain. We now describe wavelet-inspired neural
downsampling/upsampling layers [7], [14]:
– Lazy wavelet layers downsample the signal into odd/even
samples, and interleave odd/even samples for upsampling.
– Haar wavelet layers can be described following the filter
bank scheme in Fig. 4, where analysis/synthesis filters are set
as:

La[n] = [
1√
2
,
1√
2
], Ha[n] = [

1√
2
,− 1√

2
],

Ls[n] = La[−n], Hs[n] = Ha[−n].

Importantly, the above wavelet upsampling paths have
an overall frequency response that is flat. Note this in
Fig. 5 (b, d), were we depict how Haar wavelet upsampling
paths present a flat overall frequency response, allowing the
above wavelets to compensate for filtering artifacts. To further
undestand this, it is illustrative to see that the frequency
response of nearest neigbor layers (Fig. 5: a, c) resemble
the one of the low-pass filter of the Haar wavelets (Fig. 5:
b, d). Hence, the alternative signal paths in wavelets allow
compensating the filtering artifacts typically introduced by,
e.g., nearest neighbor.

Further, wavelets provide a principled way to downsam-
ple. Inspired by that, Nakamura and Saruwatari [7] replaced
WaveUnet’s [2] downsampling (discarding every other time
step) and upsampling (linear interpolation) layers by lazy and
Haar wavelet layers. However, the above wavelet layers are
designed to downsample/upsample by 2, as the original Wave-
Unet. In our work, we extend those to downsample/upsample
by 4 via cascading wavelets as in Fig. 4.

We also experiment with learnable wavelet layers. To do
so, we implement the above wavelets (both analysis and
synthesis) using the lifting scheme [7], [14] that defines
wavelet transforms with 3 parameters: a prediction operator
P , an update operator U , and a normalization constant A [7],
[14]. Haar and lazy wavelets can be implemented using the
lifting scheme by setting P=1, U=0.5, A=

√
2 and P=0,

U=0, A=1, respectively [7], [14]. By using the lifting scheme,
wavelet layers can be implemented in a differentiable fashion
where P , U and A are learnable, what defines our learnable
wavelet downsampling/upsampling layers. In our experiments,
we initialize P=0, U=0, and A=1 as the lazy wavelet. We are
the first to study learnable wavelet layers for audio synthesis.

E. Discussion: pros and cons and spectral replicas

So far, we discussed filtering and tonal artifacts. Yet,
spectral replicas can introduce additional artifacts [3]. In
this section, we consider them to further study the above
upsampling layers:

(a) Nearest neighbor ↑2 (b) Haar wavelet ↑2

(c) Nearest neighbor ↑4 (d) Cascaded Haar wavelets ↑4
Fig. 5. The frequency response of the nearest neighbor upsampler corresponds
to the low-pass synthesis filter of the depicted wavelet layers. Left: white noise
at 4kHz upsampled (↑) by 2 or 4. Right: frequency response of the synthesis
filters of Haar wavelet layers.

– Spectral replicas of signal offsets. Offsets are constants with
zero frequency. Hence, its frequency transform contains an
energy component at frequency zero. When upsampling, zero-
frequency spectral replicas can appear in-band, introducing
tonal artifacts. Specifically, they can appear at multiples of
“sampling rate / upsampling factor” Hz (the sampling rate
being the one of the upsampled signal). For example, in Fig. 2,
such replicas appear at multiples of 32/4 = 8 kHz. To further
understand this concept, note that stretch interpolation does not
introduce tonal artifacts. Yet, Fig. 2 (h) depicts tonal artifacts
at multiples of 8kHz. This is because the spectral replicas of
the constant signal appear in-band when upsampling [3].
– Spectral replicas of offsets interact with filtering artifacts.
Note that interpolation-based upsamplers (which introduce
filtering artifacts) can attenuate the exact bands where spectral
replicas of signal offests appear. Namely, they can attenuate
around “sampling rate / upsampling factor” Hz as depicted in
Figs. 1 (e, f, g) and 5. Hence, filtering artifacts are a powerful
tool to combat the spectral replicas of signal offsets. Note that
no tonal artifacts due to signal offsets appear when uspampling
a ones (constant) signal in Fig. 2 (e, f, g).
– Spectral replicas of offsets interact with tonal artifacts.
The tonal artifacts introduced by transposed and subpixel
convolutions occur at the same frequency as the first signal
offset spectral replica (at “sampling rate / upsampling factor”
Hz). Note in Fig. 2 (a, b, c, d) that tonal artifacts appear at
8kHz (due to transposed and subpixel convolutions, and signal
offsets) and at 16kHz (due to signal offsets).
– The relative energy of tonal artifacts. Remarkably, we do
not observe tonal artifacts in Fig. 1. Hence, the tonal artifacts
introduced by transposed and subpixel convolutions (prone to
introduce tonal artifacts) have little energy, compared to the
energy of the signal being upsampled (zero-mean white noise).
In contrast, Fig. 2 depicts tonal arifacts with similar energy
for: (i) transposed and subpixel convolutions (prone to intro-
duce tonal artifacts), and (ii) stretch interpolation (which does
not introduce tonal artifacts). These observations denote that
the spectral replicas of signal offsets can introduce stronger
tonal artifacts than transposed and subpixel convolutions. For
this reason, in section III, we include two modifications

313



meant to reduce signal offsets accross feature maps: removing
learnable bias terms in our models, and studying to incorporate
normalization layers.
– Spectral replicas as a source of high-frequency con-
tent. We can sort interpolation upsamplers by how strong their
filtering artifacts are: sinc→linear→nearest neighbor→stretch,
see Fig. 1. Note that sinc interpolation strongly filters the
signal, and stretch introduces no filtering artifacts. While sinc
interpolation is widely used in audio because it removes all
spectral replicas, this might not be desirable for deep learning.
We hypotesize that allowing spectral replicas accross feature
maps is beneficial, as it allows the model to have access to
coherent high-frequency feature maps for wide-band synthesis.
We now experimentally validate this hypothesis.

III. EXPERIMENTING WITH UPSAMPLING LAYERS

We use the MUSDB [15] music source separation bench-
mark to experiment with the above upsampling layers. It
is composed of 150 stereo songs at 44.1 kHz: 86 train,
14 validation, 50 test. For each song, 4 stereo sources are
extracted: vocals, bass, drums, and other. Table I reports our
results on the test set, based on the average signal-to-distortion
ratio (SDR) accross all sources [16].2 We compare end-to-end
Unet models, that are modified to accomodate the upsampling
layers under discussion. Our base model is Demucs [6], an
end-to-end Unet conformed by 6 encoding blocks (with strided
1D-CNN, ReLU, GLU) and 6 decoding blocks (with GLU,
transposed 1D-CNN, ReLU), with skip connections and x2
LSTMs in the bottleneck (with 3200 units each). Strided and
transposed convolution layers have 100, 200, 400, 800, 1600
and 3200 filters, respectively. We use no bias terms and the 1st

encoder block has no ReLUs—since this helps reducing offsets
accross feature maps, taming tonal artifacts after initialization
(see section II.E or [3]). Our GLU non-linearities [17] rely
on CNN filters of length 3. Like the original Demucs, we use:
very large models, of ≈700M parameters; weight rescaling, so
that input and output signals are of the same magnitude after
initialization; and their data augmentation scheme, creating
new mixes on-the-fly [6]. Further, we study two strategies to
mitigate upsampling artifacts: (i) employing post-processing
networks, as an “a posteriori” mechanism to palliate upsam-
pling artifacts [1], [8]; and (ii) using normalization layers, as
a way to reduce the spectral replicas of signal offsets. Post-
networks (i) are conformed by 7 residual CNN layers (each
with 8 filters of length 7, ≈6k parameters), and are trained
keeping the “pre-network” pre-trained and frozen. We experi-
mented with finetuning and with bigger/deeper post-networks
with equivalent results. We use normalization layers (ii) both
for the encoder and the decoder, to compensate for any signal
offset (also coming from skip-connections) before upsampling.
These are instance-norm [18] based, and implemented after
each GLU (other normalizations performed worse). We train
minimizing the L1 loss with Adam [19] for 600 epochs at

2Following previous works [2], [6]: for every source, we report the median
over all tracks of the median SDR over each test track of MUSDB [15].

a learning rate of 0.0002 (halved every 100 epochs) with 4
v100 GPUs, using batches of 32. Memory intensive runs, like
WaveUnet and WaveletUnet ones, use batches of 16.

A. Demucs: models based on transposed convolution

Demucs are Unet models using strided convolutions for
downsampling x4, transposed convolutions for upsampling x4,
and are set to use the same filter length and stride for both
downsampling and upsampling. We study 3 variants: partial
overlap (length=9, stride=4), full overlap (length=8, stride=4),
and no overlap (length=stride=4). Table I shows that partial
overlap underperforms its counterparts, arguably because it is
more prone to tonal artifacts due to the weights’ initialization
and overlap issues—note that no and full overlap only need to
overcome the weights’ initialization issue (see section II.A).
Since the no overlap variant is faster to train (see epoch times,
Table I) and obtains better results than full overlap, we select
it for a listening test. When we extend no overlap with post-
networks or with normalization, we observe no improvement.

B. WaveShuffle: models based on subpixel convolution

WaveShuffle are Unet models with strided convolu-
tions (length=9, stride=4) for downsampling x4, and subpixel
convolutions (length=9, stride=1) for upsampling x4. They
achieve the best SDR results, specially when including nor-
malization layers. Hence, we select the normalized variant for
a listening test. Yet, informal listening3 reveals that normal-
ization layers did not remove the tonal artifacts as intended.

C. WaveUnet: interpolation-based models

WaveUnet models use strided convolutions (length=9,
stride=4) for downsampling x4, and interpolations for upsam-
pling x4. We study variants with sinc, linear, nearest neighbor,
and stretch (see section II.B). In section II.E, we hypoth-
esized that allowing spectral replicas accross feature maps
can be beneficial. Here, we confirm that stretch and nearest
neigbor (allowing high-frequency replicas) obtain better SDR
scores than sinc and linear (attenuating high frequencies). Post-
networks and normalization do not improve results drastically,
for this reason we select the base stretch and nearest neigbor
models for a listening test. Finally, the WaveUnets we consider
obtain better results that the original (5dB vs. 3dB SDR),
thanks to an increase in model size (from 10M to 700M
learnable parameters) and a strong use of data augmentation.

D. WaveletUnet: wavelet-based models

WaveletUnet models rely on a cascade of two lazy, Haar or
learnable wavelets to downsample/upsample x4 (see section
II.D and Fig. 4). The “detail” signals in Fig. 4 contain
the skip connections’ signal, and the “coarse” signals are
processed by the next layer. In Table I, we note that lazy
wavelet outperforms Haar wavelet, and that learnable wavelet
slighlty underperforms lazy wavelet. Further, post-networks
and normalization do not improve SDR results. Hence, we
select the base lazy WaveletUnet for a listening test. Finally,
and similarly as for the WaveUnets above, the WaveletUnets
we consider also obtatin much better results than the original.

314



TABLE I
BENCHMARKING UPSAMPLING LAYERS FOR SOURCE SEPARATION

Music Source Separation input approx. SDR epoch
MUSDB’s test-set results (sec) # parm (dB) (sec)
WaveUnet [2]: original publication 6.7 10M 3.23 -
WaveletUnet [7]: original publication 6.7 15M 3.39 -
Demucs [6]: original publication 10 648M 5.34 -
Demucs: partial overlap 12 716M 5.28 316
Demucs: full overlap 12 703M 5.37 311
Demucs: no overlap 12 648M 5.39 298
Demucs: no overlap + post-networks 12 648M 5.39 296
Demucs: no overlap + normalization 12 648M 5.30 299
WaveShuffle 12 729M 5.38 305
WaveShuffle + post-network 12 729M 5.38 302
WaveShuffle + normalization 12 729M 5.44 308
WaveUnet: sinc 12 716M 4.52 553
WaveUnet: linear 12 716M 4.62 430
WaveUnet: nearest neighbor (NN) 12 716M 5.17 420
WaveUnet: stretch 12 716M 5.23 423
WaveUnet NN + post-network 12 716M 5.17 422
WaveUnet NN + normalization 12 716M 5.08 421
WaveUnet stretch + post-network 12 716M 5.23 420
WaveUnet stretch + normalization 12 716M 5.24 429
WaveletUnet: lazy wavelet 12 716M 5.31 532
WaveletUnet: Haar wavelet 12 716M 4.55 534
WaveletUnet: learnable wavelet 12 716M 5.30 535
Lazy WaveletUnet + post-network 12 716M 5.31 530
Lazy WaveletUnet + normalization 12 716M 5.22 534

TABLE II
MEAN OPINION SCORES (MOS, FROM 1 TO 5) REPORTING OVERALL

SEPARATION QUALITY OF THE MOST PROMISING UPSAMPLING LAYERS.

Demucs: WaveShuffle WaveUnet: WaveUnet: WaveletUnet:
no overlap + norm nearest neigh. stretch lazy wavelet

2.70 2.48 3.30 2.83 2.45

IV. SUBJECTIVE EVALUATION

We further evaluate the most promising models with a
listening test. 10 expert listeners evaluate 4 songs: 2 from
the Free Music Archive [20], and 2 from the test-set3. Here,
we evaluate “overall separation quality” (from 1 to 5, the
higher the better) via averaging the ratings obtained from
individually evaluating each estimated source (Table II). Wave-
Unets obtain the best MOS ratings, and nearest neighbour is
preferred over stretch (t-test: p<10−5). This is possibly because
stretch can introduce tonal artifacts (due to spectral replicas
of offsets), but nearest neighbor cannot (because its filtering
artifacts attenuate spectral replicas of offsets)3. This denotes
that filtering artifacts can be useful to combat the spectral
replicas of signal offsets. We also find that stretch is preferred
over Demucs no overlap (t-test: p<10−8), that Demucs no
overlap is preferred over WaveShuffle + norm (t-test: p=0.03),
and that WaveShuffle + norm and lazy WaveletUnet are the
worst rated (and perform equivalently, t-test: p=0.79). Further,
WaveShuffle + norm (with the best SDR scores) obtains among
the worse MOS ratings, and WaveUnet nearest neighbor
(with the best MOS ratings) obtains lower SDR scores. This
shows that small SDR differences don’t translate directly to
perceptual improvement. Finally, we want to note that post-
neworks and normalization layers were unable to fully remove
tonal artifacts.3

3Listen online: http://jordipons.me/apps/upsamplers/

V. CONCLUSIONS

Tonal artifacts are unpleasant artifacts difficult to tame
because two causing factors are simultaneously interacting: the
architecture (as for transposed and subpixel convolutions) and
the spectral replicas. Further, filtering artifacts are perceptually
managable and a convenient tool against tonal artifacts. We
note this in our listening test, where nearest neighbor layers
were preferred, possibly because these are free of tonal arti-
facts (since it attenuates bands with spectral replicas of offsets)
and allow high-frequency replicas (yielding coherent high-
frequency content for wide-band synthesis). Yet, our results
also show that many upsamplers can perform comparably
(MOS≈3) and, depending on our goals (e.g., low memory
footprint or no tonal artifacts), these might be interchangeable.

REFERENCES

[1] C. Donahue, J. McAuley, and M. Puckette, “Adversarial audio synthe-
sis,” in ICLR, 2019.

[2] D. Stoller, S. Ewert, and S. Dixon, “Wave-u-net: A multi-scale neural
network for end-to-end audio source separation,” in ISMIR, 2018.

[3] J. Pons, S. Pascual, G. Cengarle, and J. Serrà, “Upsampling artifacts in
neural audio synthesis,” in ICASSP, 2020.

[4] A. Pandey and D. Wang, “Densely connected neural network with dilated
convolutions for real-time speech enhancement in the time domain,” in
ICASSP, 2020.

[5] K. Kumar, R. Kumar, T. de Boissiere, L. Gestin, W. Z. Teoh, J. Sotelo,
A. de Brébisson, Y. Bengio, and A. C. Courville, “Melgan: Generative
adversarial networks for conditional waveform synthesis,” in NeurIPS,
2019.

[6] A. Défossez, N. Usunier, L. Bottou, and F. Bach, “Music source
separation in the waveform domain,” in arXiv, 2019.

[7] T. Nakamura and H. Saruwatari, “Time-domain audio source separation
based on wave-u-net combined with discrete wavelet transform,” in
ICASSP, 2020.

[8] P. Dhariwal, H. Jun, C. Payne, J. W. Kim, A. Radford, and I. Sutskever,
“Jukebox: A generative model for music,” in arXiv, 2020.

[9] A. Odena, V. Dumoulin, and C. Olah, “Deconvolution and checkerboard
artifacts,” Distill, vol. 1, no. 10, p. e3, 2016.

[10] F. G. Germain, Q. Chen, and V. Koltun, “Speech denoising with deep
feature losses,” in Interspeech, 2019.

[11] J. O. Smith, “Mathematics of the discrete fourier transform (dft): with
audio applications,” 2007.

[12] W. Shi, J. Caballero, F. Huszár, J. Totz, A. P. Aitken, R. Bishop,
D. Rueckert, and Z. Wang, “Real-time single image and video super-
resolution using an efficient sub-pixel convolutional neural network,” in
CVPR, 2016.

[13] A. Aitken, C. Ledig, L. Theis, J. Caballero, Z. Wang, and W. Shi,
“Checkerboard artifact free sub-pixel convolution: A note on sub-pixel
convolution, resize convolution and convolution resize,” in arXiv, 2017.

[14] W. Sweldens, “The lifting scheme: A construction of second generation
wavelets,” SIAM Journal on Mathematical Analysis, vol. 29, no. 2, pp.
511–546, 1998.

[15] Z. Rafii, A. Liutkus, F.-R. Stöter, S. I. Mimilakis, and R. Bittner, “The
MUSDB18 corpus for music separation,” 2017. [Online]. Available:
https://doi.org/10.5281/zenodo.1117372

[16] E. Vincent, R. Gribonval, and C. Févotte, “Performance measurement in
blind audio source separation,” IEEE TASLP, vol. 14, no. 4, pp. 1462–
1469, 2006.

[17] Y. N. Dauphin, A. Fan, M. Auli, and D. Grangier, “Language modeling
with gated convolutional networks,” in ICML, 2017.

[18] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Instance normalization: The
missing ingredient for fast stylization,” in arXiv, 2016.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in arXiv, 2014.

[20] M. Defferrard, K. Benzi, P. Vandergheynst, and X. Bresson, “FMA: A
Dataset For Music Analysis,” in ISMIR, 2017.

315


