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Abstract—In this paper, we propose a method of restoring the
original signal from aliased signals. Generally, it is challenging
to resolve aliasing in post-processing for already aliased signals.
However, the proposed method solves aliasing only with a post-
processing approach by increasing the number of channels. First,
we model the aliased signal as a mixture of the original and
aliased components. Next, these components are separated by
applying blind source separation to the mixture. Finally, the
separated components are converted in the frequency domain
to recover the original signal accurately. We confirm the effec-
tiveness of our method through experimental evaluations.

Index Terms—unaliasing, blind source separation, signal
restoration

I. INTRODUCTION

Aliasing is a well-known phenomenon that arises when sam-
pling a continuous-time domain signal that includes frequency
components exceeding the Nyquist frequency, which is half the
sampling frequency. The Nyquist-Shannon sampling theorem
dictates that in order to reconstruct the original signal, the
sampling frequency must be at least twice the maximum fre-
quency component in the signal. Failure to meet this criterion
results in aliasing, where the frequency components above and
below the Nyquist frequency become indistinguishable in the
discrete-time domain (Fig. 1(a)). A conventional approach to
mitigating aliasing is to apply a low-pass filter before sam-
pling, thereby sufficiently attenuating frequency components
above the Nyquist frequency (Fig. 1(b)) [1]–[3]. However,
even with the use of a low-pass filter, aliasing can still arise in
practice, particularly when the filter’s attenuation is insufficient
owing to device configuration or resource constraints. In such
cases, it may be necessary to employ more sophisticated signal
processing techniques, such as oversampling, undersampling,
and adaptive filtering, to reduce the generated aliasing artifacts.

In this paper, we propose a new approach to resolving
aliasing issues in a scenario where multiple microphones
observe a single sound source (Fig. 1(c)). Specifically, we note
that the observed aliasing signal is a composite of frequency
components located below and above the Nyquist frequency
band. By utilizing blind source separation, we can separate
and restore the original components of the signal, including
frequency components exceeding the Nyquist frequency. The
effectiveness of our proposed method is established through
objective evaluation experiments.
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Fig. 1. Overview of procedures of conventional and proposed methods.

II. MODELING OF ALIASED OBSERVED SIGNAL

Let x(τ) be an observed signal in the continuous-time
domain and fmax be the maximum frequency of x(τ) where τ
indicates the continuous-time variable. Let xali(n) be the ob-
served signal sampled at fs,ali where n indicates the discrete-
time index. If fs,ali < 2fmax, aliasing happens. We need a
higher sampling frequency than 2fmax to avoid the aliasing.
Let x̃org(n) be the observed signal sampled at the sampling
frequency fs,org = αfs,ali where

α =

⌈
fmax

fs,ali/2

⌉
(α ∈ N), (1)

and ⌈·⌉ indicates the ceiling function. The aliasing does not
happen in this case. We put˜orˆ to the signal sampled by the
frequency fs,org to avoid confusion of signals sampled by the
different frequencies fs,ali and fs,org. Since α is an integer,
we have

xali (n) = x̃org (αn) . (2)
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Hereafter, we refer to xali(n) and x̃org(n) as the aliased
and original observed signals, respectively. The problem we
consider in this paper is how to restore x̃org(n) from xali(n)
when we have multi-channel observations.

Then, let’s consider the relationship between xali (n) and
x̃org (n) in the frequency domain. X̃org (forg) (forg =
0, ..., N − 1), which is the discrete Fourier transform (DFT)
of x̃org (n) (n = 0, ..., N − 1), can be expressed as

X̃org (forg) =

N−1∑
n=0

x̃org (n)W
−nforg
N , (3)

where forg indicates the discrete frequency index, WN = ej
2π
N

indicates the rotational operator of DFT, and j indicates the
imaginary unit. For simplicity, we assume that N/α is an
integer. Moreover, Xali(fali) (fali = 0, ..., N

α − 1), which is
the DFT of xali (n) (n = 0, ..., N

α − 1), can be expressed as

Xali(fali) =
1

α

α−1∑
l=0

X̃org

(
fali +

l

α
N

)
. (4)

In the following, we consider the scenario where α =
2, indicating a situation where the signal is folded only
once owing to aliasing. For simplicity, we use f to denote
fali (fali = 0, ..., N

2 − 1), then the aliased observed signal is
expressed as

Xali (f) =
1

2

(
X̃org (f) + X̃org

(
f +

N

2

))
. (5)

We define the first and second terms in Eq. (5) as original and
aliased components, respectively.

III. APPLICATION OF BLIND SOURCE SEPARATION TO
ALIASED OBSERVED SIGNALS

A. Problem formulation

We consider an observation model in which a two-channel
microphone array observes a single source. Let x̃org,i(n) and
s̃(n) be the original observed signal of channel i and the
source signal, respectively. Furthermore, let X̃org,i(forg, t) and
S̃(forg, t) be the short-time Fourier transforms (STFTs) of
these signals, respectively. Then, the observation model can
be expressed as

X̃org(forg, t) = Ã(forg)S̃(forg, t), (6)

where X̃org(forg, t) = [X̃org,1(forg, t), X̃org,2(forg, t)]
⊤,

Ã(forg) = [Ã1(forg), Ã2(forg)]
⊤, ·⊤ indicates the transpose

of the vector, Ãi indicates the transfer function from the
source to channel i, and t indicates the discrete-time frame
index. By substituting Eq. (6) into Eq. (5), we can express the
observation model for the aliased observed signal as

Xali(f, t) =
1

2

{
Ã(f)S̃(f, t) + Ã

(
f+

N

2

)
S̃

(
f+

N

2
, t

)}
= A(f)S(f, t), (7)

where Xali(f, t) = [Xali,1(f, t), Xali,2(f, t)]
⊤, Xali,i(f, t)

indicates the STFT of xali,i(n), and xali,i(n) indicates the

Fig. 2. Arrival of a sound source at two microphones.

aliased observed signal of channel i in the discrete-time
domain. In addition, A(f) = 1

2

[
Ã(f), Ã

(
f + N

2

)]
and

S(f, t) = [S̃(f, t), S̃
(
f + N

2 , t
)
]⊤. The aliased observed

signals are expressed by adding the two components, each
multiplied by the value of a different frequency bin of the
same transfer function. In the following subsection, we will
explain that Ã(f) and Ã(f + N

2 ) will have different values if
the source is not in front of the two microphones, at least, in
the plane wave case.

B. Phase difference model of original and aliased components

Let ϕlow(f) and ϕhigh(f) be the phase differences of the
original and aliased components, respectively. Here, the phase
difference indicates the phase difference between the two
channels of the aliased observed signal. We derive models
for ϕlow(f) and ϕhigh(f). In our study, we assume that the
sound arrives as a plane wave at the speed of sound, c, from
a direction represented by θ. We consider two microphones
placed at an interval d, as shown in Fig. 2, to record the sound.
When the arrival time difference between the two channels is
δ = fsd cos θ

c , A2(f) can be expressed as

A2(f) = A1(f) W
−fδ
N (8)

using A1(f), and the phase difference of the original compo-
nents, ϕlow(f), can be expressed as

ϕlow(f) =
2πf

N

fsd cos θ

c
. (9)

On the other hand, from Eq. (8), A2(f + N
2 ) = A1(f +

N
2 )W

−(f+N
2 )δ

N . Therefore, the phase difference of the aliased
components ϕhigh(f) can be expressed as

ϕhigh(f) =
2πf

N

fsd cos θ

c
+ π

fsd cos θ

c
. (10)

C. Separation of original and aliased components

Equations (9) and (10) show that the original and aliased
components display different phase differences and arrive with
different transfer functions except for the case when θ is 90
deg. We separate these two components using an established
source separation method.

Common source separation techniques, such as beamform-
ing [4], [5], involve blind source separation (BSS) [6]–[11].
Beamforming is an approach to separating sound sources by
amplifying sources in a specific direction. However, beam-
forming requires prior knowledge of the sound source’s di-
rection, which is impractical in our scenario. BSS methods
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such as frequency domain independent component analysis
(FDICA) [7], [8] and independent vector analysis (IVA) [9]–
[11] are more appropriate because they separate mixtures
without prior knowledge of source direction based on their
independence. IVA separates sources on the basis of differ-
ences in activity or the time-varying pattern of signal strength.
However, since the sound sources considered in this study
are low-bandwidth and high-bandwidth folded components of
the same source, their activities are expected to be similar,
making IVA less effective for this scenario. Therefore, we opt
for FDICA. In this study, we assume that the original and
aliased components are independent of each other, and verify
this assumption by experiments.

FDICA separates sources by frequency bins, but reliably
determining the order of separated signals across different
frequency bins is an issue known as the permutation problem.
In this paper, we assume that the impact of reverberation is
insignificant, and the plane wave propagation model is the
appropriate approach. To address this issue, we verify whether
the phase difference between the separated signals in each
frequency bin satisfies either Eq. (9) or (10).

IV. PROPOSED METHOD

In this study, we recover the original observed signal from
the aliased observed signals. The procedure is as follows.

1) By applying FDICA [7] to the aliased observed signal
(Eq. (7)), we obtain the separated signal Y(f, t) =
[Y1(f, t), Y2(f, t)]

⊤.
2) Divide the source direction θ into discrete intervals be-

tween 0 and 180 deg, and calculate the corresponding
objective function values

∑
f J(θ, f) for each θ,

J(θ, f) =

{
J1(θ, f) (ifJ1(θ, f) ≤ J2(θ, f))

J2(θ, f) (otherwise)
(11)

J1(θ, f) = (|ϕ1(f)− ϕorg(f)|2 + |ϕ2(f)− ϕali(f)|2)
J2(θ, f) = (|ϕ1(f)− ϕali(f)|2 + |ϕ2(f)− ϕorg(f)|2)

We select the permutation for each frequency bin f
and each θ, so that the objective function is minimized.
Among the separated signals in which permutations have
been resolved, let Ylow(f, t) and Yhigh(f, t) be the sig-
nals composed of the original and aliased components,
respectively.

3) We concatenate the frequency bands, ensuring that the
original components are under the Nyquist frequency and
that the inverted and aliased components exist above the
Nyquist frequency, as

X̂prop(f, t) =Ylow(f, t), (12)

X̂prop

(
f +

N

2
, t

)
=Yhigh

(
N

2
− 1− f, t

)
. (13)

By following these steps, we obtain the restored signal
X̂prop(forg, t).

Figure 3 shows examples of spectrograms. The target signal
is a chirp signal that transitions from 0 Hz to 8 kHz over 10

s. From (b), aliased components are mixed in the band below
the Nyquist frequency owing to aliasing. Then, from (c) and
(d), the aliased components are separated from the original
components. Furthermore, (e) shows that (a) is restored by
reconstructing these components.

V. EXPERIMENTS

A. Experimental summary

To confirm the effectiveness of our proposed method, we
conducted two experiments: (i) the separation of the orig-
inal components from the aliased components and (ii) the
restoration of the original source signal. We generated the
aliased observed signals for the experiments by decimating the
original observed signals by a factor of two. We first confirmed
the effectiveness of our permutation-solving method, which is
based on the phase difference model. To verify the accuracy
of the permutations, we compared those generated by our
proposed method with those generated by assuming the correct
value of the permutation solving to be the original signal,
which cannot be directly obtained.

Nest, we evaluated the performance of our proposed method
in the discrete-time and STFT domains. We compared our
proposed method with a classical approach that uses a low-
pass filter with a cutoff frequency of 4 kHz to prevent aliasing.
The low-pass filter used in this experiment was a 30th-order
FIR filter with a Hamming window. The signal obtained by
this approach is referred to as the low-pass signal.

B. Experimental conditions

We conducted simulation experiments using Pyroomacous-
tics [13]. The distance between the sound source and the
microphones was 2.12 m, and the interval between the mi-
crophones was 0.03 m. In the first experiment, the direction
of arrival was changed from 0 deg to 90 deg at 5 deg intervals.
In the second experiment, the direction of arrival was set to
45 deg. The sampling frequency was 16 kHz and artificially
generated aliased observed signals were folded back at 4 kHz.
We set the reverberation time (RT60) to two different types:
0 ms and 100 ms. We set the number of frames for the STFT
to 1024 points when RT60 is 0 ms and to 4096 points when
RT60 is 100 ms. The frame shift length was half of the frame
length in both cases. We utilized a total of 100 speech signals
from the Carnegie Mellon University (CMU) Arctic speech
databases, comprising 50 male and 50 female voices [12]. For
FDICA, we used the auxiliary function method to estimate the
separation matrix [8].

We used the scale-invariant signal-to-distortion ratio (SI-
SDR) [14] and perceptual evaluation of speech quality (PESQ)
score [15] to evaluate the sound quality objectively. We
objectively evaluated the reproducibility of the source signal
in the STFT domain by calculating the log spectral distance
(LSD) for each frequency bin. Given the original observed
signal x̃org(n) and the signal to be evaluated, x̂(n), x̂(n)
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TimeChannel

Fig. 3. Examples of spectrograms of proposed method for chirp signal. (a) original observed signals, (b) aliased observed signals, (c) and (d) separated signals
(original and aliased components), and (e) restored signal.

includes the aliased observed, low-pass, and restored signals.
SI-SDR is defined as

SI-SDR = 10 log10
||βx̃org(n)||2

||βx̃org(n)− x̂(n)||2
, β =

x̂(n)⊤x̃org(n)

||x̃org(n)||2
.

Likewise, the LSD for each frequency bin is defined as

LSD(forg) =(
1

T

T∑
t=1

∣∣∣log |X̃org(forg, t)|2 − log |X̂(forg, t)|2
∣∣∣2)

1
2

, (14)

where X̃org(forg, t) and X̂(forg, t) indicate the STFTs of
x̃org(n) and x̂(n), respectively.

Since the number of samples in the aliased observed signal
differs from that in the original observed signal, we aligned
the sample counts by zero-padding the STFT domain in the
frequency range of 4–8 kHz. Additionally, to compute the LSD
for both the aliased observed signal and the low-pass signal,
we added 10−5 to the frequency range of 4–8 kHz in which
the signal was zero.

C. Experiment for evaluating permutation correctness rate

Figure 4 shows the accuracy rate of permutations for our
proposed permutation-solving method. First, we focus on the
case when the reverberation time was 0 ms. The maximum
permutation accuracy rate (99.6 %) was achieved at a source
arrival direction of the 50 deg case. The results indicate
that the proposed method based on phase difference models
can accurately estimate the correct permutations when the
reverberation effect is negligible. However, the correctness rate
decreased when the direction of arrival (DOA) from the sound
source was around 90 deg. This is because, when the DOA
from the sound source is approximately 90 deg, Eqs. (9) and
(10) become identical, making it difficult to determine the
permutation accurately. When the reverberation time was 100
ms, the overall permutation accuracy rate decreased, which is
believed to be due to the fact that the phase differences of
the separated signals no longer adhere to the phase difference
models because of the effects of reverberation.

D. Experiment for evaluating restoration performance

We evaluated the quality of sound restoration for the aliased
observed, low-pass, and restored signals. First, Table I shows
the results of comparing SI-SDR and PESQ for each signal.
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Fig. 4. Percentage of correct permutations of proposed method for each DOA
from sound source.

Restored signal (prop.) and Restored signal (true) refer to
the signal obtained by resolving permutations using the phase
difference models and the signal obtained by resolving per-
mutations correctly, respectively. The restored signal achieved
the highest SI-SDR and PESQ score compared with the aliased
observed and low-pass signals when the reverberation time was
0 ms. When the reverberation time was 100 ms, the proposed
method yielded a lower SI-SDR and PESQ score than when
the reverberation time was 0 ms; specifically, the PESQ score
of the proposed method was lower than that of the low-
pass signal. This decrease in source separation performance
is attributed to the effects of reverberation. Moreover, the
difference in SI-SDR and PESQ score between the restored
signals (prop.) and (true) when the reverberation time was
100 ms increased as compared with the case when the rever-
beration time was 0 ms. This can be attributed to the fact that
the effects of reverberation no longer solve the permutations.
Figure 5 shows examples of spectrograms of (a) the original
observed signal, (b) the aliased observed signal, (c) the low-
pass signal, and (d) the restored signal when the reverberation
time was 0 ms. The target signal is a speech signal from the
CMU Arctic speech databases [12]. From Fig. 5, the sound
quality of the proposed method is better, as shown in Table I
from the following two points: (I) The separation of low-
frequency aliasing components (compare Fig. 5 (b) and (d)).
(II) Restoration of components above the Nyquist frequency
(compare Fig. 5 (c) and (d)).

Next, the results of comparing each signal with the LSD
for each frequency bin are shown in Fig. 6. First, we will
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Fig. 5. Examples of spectrograms. (a) original observed signal, (b) aliased
observed signal, (c) low-pass signal, and (d) restored signal.

TABLE I
SI-SDR AND PESQ SCORE OF EACH SIGNAL.

SI-SDR [dB] PESQ
0 ms 100 ms 0 ms 100 ms

Aliased observed signal 17.26 17.12 2.38 2.61
Low-pass signal 20.13 19.97 3.68 3.86
Restored signal (prop.) 32.86 20.86 4.27 2.63
Restored signal (true) 32.89 23.02 4.27 2.86

consider the case when the reverberation time was 0 ms.
Focusing on the low-frequency band, the proposed method
achieved a smaller LSD for the low-pass signal than for the
aliased observed signal by effectively separating mixed aliased
components, as shown in Fig. 5(d). However, in the high-
frequency bandwidth, an overlap between the aliased observed
signal and the low-pass signal resulted in a significantly large
LSD for these signals. This is because the aliased observed
signal lacks high-frequency components, whereas the low-
pass signal reduces high-frequency components, as shown in
Figs. 5(b) and (c).

On the other hand, the proposed method achieves the
smallest LSD owing to the accurate restoration of the high-
frequency band of the original observed signal, as shown
in Fig. 5(d). In summary, the proposed method outperforms
the conventional method in terms of restoration performance
in the STFT domain for the problem set up in this paper
when the effect of reverberation is sufficiently small. If the
high-frequency component of the original observed signal is
significant, the difference in LSD will be more notable in the
low-frequency band.

When the reverberation time was 100 ms, the overall LSD
increased. As with the SI-SDR and PESQ score comparisons,
this is likely due to the decrease in source separation perfor-
mance caused by the effects of reverberation.

VI. CONCLUSION

In this paper, we proposed a novel method of restoring
observed signals that have been degraded by aliasing. The
method involved applying a blind source separation technique
to the observed signal, followed by signal reconstruction.

Frequency [kHz]

LS
D

Fig. 6. LSD for each frequency bin at reverberation times of 0 ms (upper
panels) and 100 ms (lower panels).

Our experiments validated the effectiveness of the proposed
method. The results demonstrate improvement in restored
signal quality, particularly in the high-frequency band.

ACKNOWLEDGEMENT

This work was supported by Grant-in-Aid for Scientific
Research (A) (Japan Society for the Promotion of Science
(JSPS) KAKENHI Grant Number 20H00613).

REFERENCES

[1] T. Stilson, “Efficiently-Variable Non-Oversampling Algorithms in
Virtual-Analog Music Synthesis — A Root-Locus Perspective,” Ph.D.
dissertation, Dept. of Electrical Eng., Stanford Univ., Stanford, CA,
2006.

[2] V. Valimaki et al., “Antialiasing Oscillators in Subtractive Synthesis,”
IEEE Sig. Process. Mag., vol. 24, no. 2, pp. 116–125, 2007.

[3] C. Jin et al., “Low Pass Filter for Anti-Aliasing in Temporal Action
Localization,” arXiv preprint, arXiv:2104.11403.

[4] B. D. Van Veen et al., “Beamforming: A versatile approach to spatial
filtering,” IEEE ASSP Mag., vol. 5, no. 2, pp. 4–24, 1988.

[5] H. Cox et al., “Robust Adaptive Beamforming,” IEEE Trans. on ASSP,
vol. 35, no. 10, pp. 1365–1376, 1987.

[6] P. Comon, “Independent Component Analysis, A New Concept?,” Signal
Process., vol. 36, no. 3, pp. 287–314, 1994.

[7] P. Smaragdis, “Blind Separation of Convolved Mixtures in the Frequency
Domain,” Neurocomputing, vol. 22, pp. 21–34, 1998.

[8] N. Ono et al., “Auxiliary-Function-Based Independent Component Anal-
ysis for Super-Gaussian Sources,” Proc. LVA/ICA, vol. 6365, 2010

[9] T. Kim et al., “Blind Source Separation Exploiting Higher-Order
Frequency Dependencies,” IEEE/ACM Trans. on Audio Speech Lang.
Process., vol. 15, no. 1, pp. 70–79, 2007.

[10] A. Hiroe, “Solution of Permutation Problem in Frequency Domain ICA
using Multivariate Probability Density Functions,” Proc. ICA, pp. 601–
608, 2006.

[11] N. Ono, “Stable and Fast Update Rules for Independent Vector Analysis
based on Auxiliary Function Technique,“ Proc. WASPAA, pp. 189–192,
2011.

[12] J. Kominek et al., “The CMU Arctic Speech Databases,” Proc. ISCA
SSW, pp. 223–224, 2004.

[13] R. Scheibler et al, “Pyroomacoustics: A Python Package for Audio
Room Simulation and Array Processing Algorithms,” Proc. ICASSP,
pp. 351–355, 2018.

[14] J. L. Roux et al., “SDR – Half-baked or Well Done?,” Proc. ICASSP,
pp. 626–630, 2019.

[15] A. W. Rix et al., “Perceptual Evaluation of Speech Quality (PESQ) –
A New Method for Speech Quality Assessment of Telephone Networks
and Codecs,” Proc. of ICASSP, pp. 749–752, 2001.

325


