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Abstract—In this paper, we propose algorithms for handling
non-integer strides in sampling-frequency-independent (SFI) con-
volutional and transposed convolutional layers. The SFI layers
have been developed for handling various sampling frequencies
(SFs) by a single neural network. They are replaceable with
their non-SFI counterparts and can be introduced into various
network architectures. However, they could not handle some
specific configurations when combined with non-SFI layers. For
example, an SFI extension of Conv-TasNet, a standard audio
source separation model, cannot handle some pairs of trained
and target SFs because the strides of the SFI layers become
non-integers. This problem cannot be solved by simple rounding
or signal resampling, resulting in the significant performance
degradation. To overcome this problem, we propose algorithms
for handling non-integer strides by using windowed sinc inter-
polation. The proposed algorithms realize the continuous-time
representations of features using the interpolation and enable
us to sample instants with the desired stride. Experimental
results on music source separation showed that the proposed
algorithms outperformed the rounding- and signal-resampling-
based methods at SFs lower than the trained SF.

Index Terms—Sampling-frequency-independent convolutional
layer, sinc interpolation, audio source separation

I. INTRODUCTION

Deep neural networks (DNNs) have been used for various
audio signal processing tasks such as music source sepa-
ration [1], speech enhancement [2], and automatic music
transcription [3], [4]. Most studies on DNN-based audio signal
processing methods assume that the sampling frequency (SF)
of an input signal is the same in the training and inference
stages [1]–[16]. Hence, to handle untrained SFs, we need an
additional processing such as signal resampling.

As an alternative to signal resampling, we previously
proposed sampling-frequency-independent (SFI) convolutional
layers [17]. These layers are based on the analogy between an
ordinary convolutional layer and a collection of digital filters.
A digital filter can be designed from an analog filter. Since
an analog filter is SFI, we can use a collection of analog
filters (latent analog filters) as an SFI structure. By utilizing a
digital filter design technique, we can consistently generate the
parameters (weights) of the ordinary convolutional layer from
the latent analog filters for various SFs. We experimentally
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found that the SFI layers work more consistently than signal
resampling for SFs much lower than a trained SF. Since SF is
usually task-specific, the SFI layers paved the way to realize
an audio source separation method that can be universally used
for any downstream tasks.

The SFI layers were applied to Conv-TasNet [5], which
combines DNN-based mask predictors with a trainable analy-
sis/synthesis filterbank. This SFI extension is called SFI Conv-
TasNet. It uses the SFI layers only for the analysis/synthesis
filterbank, leaving the mask predictors unchanged from Conv-
TasNet, which enables us to introduce recently developed mask
predictors [12]–[16]. It requires that for each target SF, the
kernel size K and stride S of the SFI layer should be adjusted
to match those used during training in seconds. This is because
the mask predictor is not SFI and its input should have the
same time resolution for any SFs.

However, for some pairs of target and trained SFs, K and
S become non-integers, even though a convolutional layer
assumes them to be integers. For example, when SFI Conv-
TasNet is trained with K = 160 and S = 80 (5 ms and 2.5 ms,
respectively) at an SF of 32 kHz, the corresponding K and S
are 110.25 and 55.125 at an SF of 22.05 kHz, respectively.
Although the evaluation was performed at SFs where K and S
became integers in [17], this problem is unavoidable to realize
the versatile preprocessor of our interest.

One simple method to handle such a non-integer is to round
it to the nearest integer. However, rounding S changes the
time resolution of the mask predictor’s input and degrades the
separation performance, as we will show later in Section IV.
Another method to handle non-integer strides is to use the
rounding jointly with a mask predictor based on a two-
dimensional convolutional neural network (2D-CNN). Paulus
et al. experimentally showed that rounding K and S did not
greatly affect the performance of speech dialogue separation
when using a 2D-CNN-based mask predictor [18]. However,
this method greatly restricts the architecture of the mask
predictor. Specifically, the mask predictor must be agnostic to
time and frequency axes and must not contain any pooling
or unpooling layers. To ensure flexibility in the network
architecture, we need to explore another approach.

In this paper, we propose an algorithm of the SFI convo-
lutional layer for non-integer S by utilizing windowed sinc
interpolation. This interpolation provides the continuous-time
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Fig. 1: Architecture of SFI Conv-TasNet. “SFI conv.” and
“SFI trans. conv.” denote SFI convolutional and transposed
convolutional layers, respectively.

counterpart of a discrete-time signal. Thus, by inserting it
before the decimation in the convolutional layer, we can obtain
the mask predictor’s input having the desired stride. We also
extend this algorithm for an SFI version of a transposed
convolutional layer (SFI transposed convolutional layer). We
demonstrate the effectiveness of the proposed algorithms in
comparison to rounding- and signal-resampling-based methods
through music source separation experiments.

II. CONVENTIONAL METHODS

A. SFI Convolutional Layer

We briefly describe a one-dimensional SFI convolutional
layer [17]. Let C (in) and C (out) be the numbers of input and
output channels of this layer, respectively. This layer consists
of C (in)C (out) analog filters and an ordinary convolutional
layer. Given a target SF, it generates discrete-time impulse
responses of length K that are designed to approximate the
continuous-time impulse response or frequency response of the
analog filters by using time- or frequency-domain filter design
methods, respectively. Since the focus of this paper is how to
handle non-integer S, we omitted the computation of the filter
design methods due to space limitations (see [17] for details).
A convolutional layer computes a cross-correlation between an
input feature and the weights. Hence, the discrete-time impulse
responses are reversed in time and are used as the weights for
the convolutional layer. Replacing the convolutional layer with
the transposed convolutional layer yields the SFI transposed
convolutional layer.

B. SFI Conv-TasNet

SFI Conv-TasNet is a Conv-TasNet extension that com-
bines J mask predictors and an SFI analysis/synthesis filter-
bank [17], where J is the number of sources. Figure 1 shows
the architecture of SFI Conv-TasNet. The analysis filterbank,
called the encoder, consists of an SFI convolutional layer with
C (in) = 1 and C (out) = C followed by a rectified linear unit
(ReLU). Given an N -length monaural mixture {x[n]}N−1

n=0 ,
the encoder outputs a pseudo time-frequency representation
{Xc[m]}C−1,M−1

c=0,m=0 , where M is the number of frames and n,
m, and c are the discrete-time, frame, and channel indices,
respectively. The pseudo time-frequency representation is fed
into the mask predictor of source j, which mainly consist
of one-dimensional dilated convolutional layers. See [14] for
the details of the architecture of the mask predictors. After
multiplying {Xc[m]}c,m by the predicted mask, we obtain a
time-domain separated signal of each source {ŝj [n]}N−1

n=0 by
using the synthesis filterbank, called the decoder. The decoder

is an SFI transposed convolutional layer with C input channels
and one output channel. The kernel size K and stride S of the
decoder are the same as those of the encoder.

At the inference stage, we need to adjust K and S in
accordance with a target SF, as described in Section I. Let
T be the sampling period of an input signal. To clarify the
values used in the training and inference stages, we hereafter
use K, S, and T for the training stage and K ′, S′, and T ′ for
the inference stage, respectively. The kernel size and stride at
T ′ are given as

K ′ =
T

T ′K, S′ =
T

T ′S. (1)

This adjustment keeps the time resolution of {Xc[m]}c,m
unchanged, although it is valid only for integers K ′ and S′.

C. Windowed Sinc Interpolation

The windowed sinc interpolation is a popular bandlimited
interpolation of a discrete-time signal. Let t be continuous-
time and g(t) be the real-valued window function. For a given
discrete-time signal x[n] with a sampling period of T , the
interpolated signal x̃(t) is given as

x̃(t) =

∞∑
n=−∞

x[n]h(t− nT, T ), (2)

where h(t, T ) is the windowed sinc function:

h(t, T ) = g(t)sinc
(

t

T

)
, sinc(t) =

sin(πt)

πt
. (3)

Now, we choose a window function with a finite support
around t = 0. More concretely, we assume that g(t) = 0
for t < −LT/2 or t > LT/2, where L is a positive integer.
This choice can reduce the infinite sum in (2) to the finite sum
from n = ⌈t/T − L/2⌉ to n = ⌊t/T + L/2⌋, which enables
us to implement the interpolation with computers.

III. PROPOSED METHOD

A. Motivation and Strategy

To adjust K ′ and S′ for a target SF, we previously used
(1), as described in Section II-B. However, this adjustment
method requires K ′ and S′ to be integers. Thus, we need
another method for non-integers K ′ and S′.

The simplest way is to round non-integers to the nearest
integers. In a preliminary experiment, we confirmed that
rounding K ′ did not significantly affect the separation per-
formance. One reason for this is that, similar to a time-
frequency transform, K ′ mainly affects spectral leakage in the
frequency axis and has little impact on the time resolution of
{Xc[m]}c,m. However, S′ is not used in the weight generation
process and rounding S′ inevitably changes the time resolution
of {Xc[m]}c,m. Thus, this mismatch can affect the separation
performance, as we will show in Section IV.

To resolve this mismatch, we propose algorithms of the
SFI layers for non-integer S′ by introducing the windowed
sinc interpolation. Fig. 2 shows a schematic illustration of
the proposed algorithms. Since the interpolation provides a
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Fig. 2: Schematic illustration of proposed algorithms for SFI layers.

continuous-time counterpart of the discrete-time signal, it
enables us to sample instants at any SF. For simplicity, we
describe algorithms for the SFI layers of SFI Conv-TasNet in
the subsequent sections, but the following derivations can be
extended for every pair of C (in) and C (out). We also assume
that g(t) is an even function and K ′ is rounded, which we
denote by Ǩ ′.

B. Algorithm for SFI Convolutional Layer

In this section, we propose a sinc-interpolation-based al-
gorithm for the SFI convolutional layer. The convolutional
layer with a stride of S′ and a padding size of P first
computes a cross-correlation between {x[n]}n and the weights
{wc[k]}C−1,⌊(Ǩ′−1)/2⌋

c=0,k=⌊−(Ǩ′−1)/2⌋ and then decimates it with an in-
terval of S′. The cross-correlation yc[i] is given by

yc[i] =

⌊(Ǩ′−1)/2⌋∑
n=⌊−(Ǩ′−1)/2⌋

x[i+ n]wc[n], (4)

where i is the discrete-time index. The length of yc[i] is given
as I = N + 2P − Ǩ ′ + 1. Although we can decimate yc[i]
with a factor of S′ for an integer S′, we cannot perform such
decimation directly for a non-integer S′. Thus, the proposed
algorithm applies the sinc interpolation to yc[i], which enables
us to compute Xc[m] for a non-integer S′.

By invoking (2), we can describe the interpolation of yc[i]:

ỹc(t) =

⌊t/T ′+L/2⌋∑
i=⌈t/T ′−L/2⌉

yc[i]h(t− iT ′, T ′). (5)

By sampling instants from ỹc(t) with an interval of S′T ′, we
can obtain the pseudo time-frequency representation for non-
integer S′1:

Xc[m] = ỹc(mS′T ′). (6)

If S′ is an integer, (6) reduces to decimating yc[i] by a factor
of S′ because sinc(t) = 0 for any nonzero integer t.

1When resampling a signal with a windowed sinc interpolation, we usually
avoid aliasing by changing the second argument of h(t, T ). However, the
decimation of a convolutional layer is not followed by any antialiasing method.
Thus, we emulate this decimation in (6).

C. Algorithm for SFI Transposed Convolutional Layer

Similarly to the SFI convolutional layer, we can derive
a sinc-interpolation-based algorithm for the SFI transposed
convolutional layer with non-integer S′. To simplify notations,
we reuse x[n], yc[i], and wc[k] for the counterparts of the
transposed convolutional layer.

For an integer S′, a transposed convolutional layer first pads
S′ − 1 zeros between Xc[m] to obtain yc[i]. It then outputs
x[n] as the cross-correlation between yc[i] and wc[i].

Now, we consider a continuous-time version of the trans-
posed convolutional layer to handle a non-integer S′. The
windowed sinc interpolation of wc[i] is given as

w̃c(t) =

⌊(Ǩ′−1)/2⌋∑
i=⌊−(Ǩ′−1)/2⌋

wc[i]h(t− iT ′, T ′). (7)

Since Xc[m] can be seen as a discrete-time signal with a
sampling period of S′T ′, i.e.,

∑M−1
m=0 Xc[m]δ(t−mS′T ′), we

can write the continuous-time version of x[n] as

x̃(t) =

∫ ∞

−∞
dτ

M−1∑
m=0

Xc[m]δ(t+ τ −mS′T ′)w̃c(τ) (8)

=

⌊(Ǩ′−1)/2⌋∑
i=⌊−(Ǩ′−1)/2⌋

X̃c(t+ iT ′)wc[i], (9)

where δ(t) is Dirac’s delta function and

X̃c(t) =

⌊t/(S′T ′)+L/(2S′)⌋∑
m=⌈t/(S′T ′)−L/(2S′)⌉

Xc[m]h(t−mS′T ′, T ′). (10)

By sampling x̃(t) with an interval of T ′, we obtain x[n]:

yc[i] =X̃c(iT
′), (11)

x[n] =

⌊(Ǩ′−1)/2⌋∑
i=⌊−(Ǩ′−1)/2⌋

yc[i+ n]wc[i]. (12)

If S′ is an integer, (11) reduces to the zero-padding of Xc[m]
because sinc(t) = 0 for any nonzero integer t.

The proposed algorithms use the windowed sinc interpola-
tion and the interpolation accuracy is determined by L. Since
the interpolation accuracy would affect the separation perfor-
mance, we will examine their relationship in Section IV-B.
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IV. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of the proposed algorithms,
we conducted music source separation experiments using the
MUSDB18-HQ dataset [19]. This dataset has 150 tracks, each
of which consists of four instruments (vocals, bass, drums, and
other). We used the official data split of 86, 14, and 50 tracks
for training, validation, and test, respectively. As an evaluation
measure, we used the signal-to-distortion ratio (SDR) obtained
with the BSSEval v4 toolkit [20]. To reduce the dependency
on initialization, we trained models using four random seeds
and computed the averages and standard errors of the SDRs.

We used the same training setup as in [17]. As a source
separation model, we chose SFI Conv-TasNet using the
frequency-domain filter design, which achieved the highest
separation performance in [17]. The latent analog filter was
a modulated Gaussian filter. Its impulse response is given by

f(t) = 2
√
2σ2π exp

(
−σ2t2

2

)
cos(µt+ ϕ), (13)

where µ is the center angular frequency, σ is the parameter
corresponding to the bandwidth of the filter, and ϕ is the initial
phase. These parameters were initialized as in [17] and were
trained jointly with other DNN parameters. The SFI Conv-
TasNet was trained with a batch size of 12 for 250 epochs
by RAdam [21] wrapped in a LookAhead optimizer [22].
The same data augmentations used in [17] were applied. The
loss function was the negative scale-invariant source-to-noise
ratio (SI-SNR) between the estimated and groundtruth signals.
Since the SDR is scale-dependent, we used the scaling method
presented in [14]: {αi}Jj=1 = argmin{αj}J

j=1

∑N−1
n=0 (x[n] −∑J

j=1 αj ŝj [n])
2, where αj is the scale for source j.

We compared the following four methods of handling non-
integer strides. Rounding is a method to round S′ to the nearest
integer. Resampling-near avoids non-integer S′ by resampling
a mixture signal at the nearest SF where the corresponding
stride becomes an integer, separating the resampled signal with
the trained model, and resampling the separated signals back to
the original SF. Resampling-trained resamples a mixture signal
at the trained SF. The signal resampling was implemented
with librosa [23] as in [17]. Proposed uses the proposed
algorithms for handling non-integer S′. The windowed sinc
interpolation was implemented with torchaudio [24]. For
g(t), we used the Kaiser window with the default parameters
of torchaudio.functional.resample. All methods
used the same trained models. Following the experimental
conditions used in [17], the SFs of the training and validation
data were set to 32 kHz and the kernel size and stride were
set to 5 and 2.5 ms (K = 160 and S = 80), respectively.
The methods were evaluated at an SF of 11.025, 22.05, and
44.1 kHz, where S′ becomes 27.5625, 55.125, and 110.25,
respectively. In addition to these popular SFs, we evaluated
the methods with an in-between SF, 16.538 kHz, to show the
generality of the proposed method.

TABLE I: SDRs [dB] of Proposed with varying L for vocals

L
SF [kHz]

11.025 16.538 22.05 44.1

2 2.3 ± 0.3 1.5 ± 0.3 2.4 ± 0.1 1.8 ± 0.1
4 4.7 ± 0.2 4.8 ± 0.0 5.4 ± 0.1 5.5 ± 0.1
8 4.6 ± 0.2 5.2 ± 0.1 5.6 ± 0.0 5.8 ± 0.1
16 4.7 ± 0.2 5.3 ± 0.1 5.6 ± 0.1 5.8 ± 0.1
32 4.7 ± 0.2 5.4 ± 0.1 5.6 ± 0.1 5.8 ± 0.1
64 4.7 ± 0.2 5.4 ± 0.1 5.6 ± 0.1 5.8 ± 0.1

B. Relationship Between Interpolation Accuracy and Separa-
tion Performance

We first examined the relationship in Proposed between
separation performance and interpolation accuracy. Table I lists
the averages and standard errors of SDRs with varying L for
vocals. The SDRs approximately increased as L increased,
showing that lowering the interpolation accuracy degrades the
separation performance. At all SFs, the SDRs were saturated
for L ≥ 16 and this tendency was observed in the results of
bass, drums, and other. Hence, we decided to use L = 16.

Since L also involves the processing time, we measured the
processing times for a 60-s signal using an NVIDIA GeForce
RTX 3090 GPU. At an SF of 11.025 kHz, the processing time
averaged over ten trials was 72.8 ms. Although this is longer
than Rounding (52.1 ms), it is fast enough in practice and can
be reduced by brushing up the implementation of Proposed.

C. Comparison with Existing Methods

Fig. 3 shows the averages and standard errors of SDRs for
all methods per instrument. As a reference, we also show
SDRs at SFs where K ′ and S′ are integers (gray dashed
curve), which we call Reference. SDRs of Resampling-near
significantly decreased compared with Reference. Although
the other methods had SDRs consistent with Reference at an
SF of 44.1 kHz, Rounding and Resampling-trained quickly
decreased as the SF decreased. At the lower SFs, SDRs
of Rounding were around one decibel below Reference for
vocals, bass, and other. One reason for the performance drop
is that the change in time resolution caused by Rounding
increases as the SF decreases. This result shows that round-
ing S′ degrades the separation performance at lower SFs.
Resampling-trained had higher SDRs than Rounding at an
SF of 22.05 kHz. However, its SDRs dropped significantly
as the SF decreases, which is consistent with the results ob-
served in [17]. By contrast, Proposed provided more consistent
SDRs with Reference at all SFs for all instruments. These
results clearly demonstrate the effectiveness of the proposed
algorithms.

The SDR gaps between Proposed and Rounding for vocals,
bass, and other were greater than those for drums. The change
in time resolution caused by rounding S′ corresponds to that
in the SF of an input signal for the mask predictors. Thus, it
should strongly affect the separation performance for the audio
signals containing pitched sounds. The drums are unpitched
instruments and the change in time resolution can be less
significant compared with pitched sounds. This observation
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Fig. 3: SDRs of Rounding, Resampling-near, Resampling-trained, and Proposed. Error bars represent standard errors and red
dotted line denotes the trained SF. For reference, gray dashed line shows SDRs at SFs where K ′ and S′ are integers.

leads to a conjecture that slightly changing the time resolution
of an input is an adversarial attack for the separation of pitched
sounds. Its investigation is beyond the scope of this paper and
we leave it as future work.

V. CONCLUSION

We proposed algorithms of the SFI layers for non-integer
strides. The proposed algorithms use the windowed sinc in-
terpolation to bridge two signals of different SFs. For the
SFI convolutional layer, the interpolation is applied to the
cross-correlation between an input and the weights, which
enables us to sample instants with a desired SF. For the SFI
transposed convolutional layer, the interpolation is applied to
an input. By using these algorithms, we can handle non-integer
strides in SFI Conv-TasNet. Experimental results showed that
the proposed method outperforms the rounding- and signal-
resampling-based methods at lower SFs.
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