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Abstract—Up to today telephone speech lacks of perceptual
quality and intelligibility due to bandwidth removal and quantisa-
tion artefacts in the encoding process. Super-resolution artificially
regenerates this missing frequency content and thus improves the
perceptual quality and intelligibility. This work proposes a novel
approaches for super-resolution based on generative adversarial
networks with convolutional architectures. Motivated by the
source-filter model of the human speech production, the proposed
system decomposes the speech signal into spectral envelope and
excitation signal. The missing frequency-content of envelope and
excitation are restored with dedicated networks. The network
restoring the excitation signal is trained such that there is no
mismatch between the excitation signal and the envelope. By
this, we achieve better perceptual quality at lower computational
complexity.

Index Terms—speech enhancement, speech super-resolution,
bandwidth extension, artificial bandwidth expansion, audio
super-resolution

I. INTRODUCTION

Speech communication is a technology used by most people
every day, creating a vast amount of data that needs to be
transmitted over Voice over IP, cellular or public switched
telephone networks. While the amount of transferred data
should be kept low, the quality of speech is desired to be high.
In order to reach this goal, speech compression technologies
have evolved over the past decades from compressing ban-
dlimited speech with simple pulse code modulation to coding
schemes following speech production and human perception
models able to code fullband speech. Albeit the existence of
such standardised speech codecs, their adoption in cellular or
public switched telephone networks takes years if not decades.
For this reason AMR-NB [1] remains the most frequently
used codec for mobile speech communication which merely
encodes frequencies from 200Hz to 3400Hz (usually named
narrowband, NB). However, transmitting band-limited speech
not only harms the acoustic quality but also the intelligibility
[2], [3]. Super-resolution (SR) artificially regenerates missing
frequency components without transmitting additional infor-
mation from the encoder. A SR can be added to the decoder
toolchain without any adaption of the transmission network
and thus can serve as an intermediate solution to improve the
perceptual audio quality and intelligibility until better codecs
will be deployed in the network.

This work presents a SR based on deep convolutional
networks using adversarial learning targeting speech coding
scenarios. To summarise our contribution, we show how the

well-known separation of speech signals into excitation signal
and envelope can be implemented with deep convolutional
architectures and we successfully apply it to SR. By this
we can reduce the computational complexity while increasing
the perceptual quality. We train all networks with a mixture
of adversarial and Mel-loss. This allows for perceptually
motivated loss while retaining the advantages of adversarial
loss.

II. STATE-OF-THE-ART

Early SRs already utilised the separation of the speech
signal into excitation and spectral envelope. These systems
apply statistical models to extrapolate the spectral envelope
while generating the excitation signal by spectral folding [4],
spectral translation [5] or by nonlinearities [6]. Such statistical
models are Hidden Markov Models [4] or later DNNs [5], [7]–
[12].

Since artificial excitation generation introduces artifacts,
it may be beneficial to extrapolate the time-domain signal
by DNNs. Unfortunately the probability distribution of time-
domain speech is very complex and hard to model, even with
today’s powerful networks. Models trained with Lp-loss or
cross-entropy loss to match this complex distribution, will
only produce a smoothed approximation thereof. When applied
to SR, this means that the resulting speech signal will lack
crispness and energy [13]. GANs [14] can be seen as a kind
of extended loss function. Here, two networks, a generator and
a discriminator compete against each other. The generator tries
to generate realistic data while the discriminator distinguishes
between the generated data and the data from the training
database. After successful training, the discriminator is not
needed any longer, its mere purpose lies in providing a better
loss for the generator. The first SR extrapolating the time-
domain signal was [9], the first using a GAN were [13], [15]–
[18]. Other approaches than GANs to do SR are autoregressive
networks [19].

III. PROPOSED SYSTEMS

The above mentioned SRs, that model the speech signal in
time-domain, have the problem that the DNNs used for this
task need to be quite large resulting in high computational
complexity and memory requirements. In this work we show
how speech signals separated into excitation and envelope
can be modeled with GANs. Here the application is SR but
not limited to it. The training objective used is a mixture of
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adversarial and feature loss. Using this combination allows
for simpler architecture and faster training of the whole
system. For comparison we also present a second SR that
models the speech signal without the separation into excitation
signal and envelope. Both systems are trained with the same
discriminator architecture, the same perceptual loss and the
same optimisation algorithm. First, both generator networks
are presented, the discriminator will be described at the end
of this section. The input to all generator networks are raw
time-domain speech samples coded with AMR-NB, the output
are WB time-domain speech samples.

A. LPC-GAN

The proposed system is presented in Fig.1 where the input
NB speech signal is separated into a set of LPCs representing
the spectral envelope and an excitation signal. The excitation
signal together with the input signal are fed to a first DNN for
extrapolation to a WB excitation signal. This path operates on
samples, shown here as solid lines. The LPCs are extrapolated
to a WB envelope with a second DNN in the upper path.
This path operates on frames of 15 ms, shown here as dashed
lines. Since LPC coefficients are IIR filter coefficients and
manipulations like extrapolation could result in an unstable
filter, they are extrapolated in the LSF domain [20]. LSFs are
a bijective transformation of LPCs with several advantages:
First, they are less sensitive to noise disturbances and an
ordered set of LSFs with a minimum distance between the
coefficients will always guarantee a stable LPC filter. Second,
the spectral envelope at a particular frequency depends mostly
on one of the LSFs so an erroneous extrapolation of a single
LSF coefficient mainly affects the spectral envelope at a
limited frequency range. These properties make them suitable
for being extrapolated to a set representing a WB envelope.
The extrapolated LSF coefficients are transformed back to the
LPC domain for shaping the extrapolated excitation signal,
which forms the output signal. The extrapolated excitation
signal, shaped by the LPC envelope, forms the output WB
signal. When training the network extrapolating the excitation
signal, any mismatch between the extrapolated envelope and
excitation signal shall be avoided. For this reason the loss
for training the DNN extrapolating the excitation signal is
calculated on the shaped output speech and the gradient is
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Fig. 1: Proposed system based on the decomposition of the
speech signal into excitation signal and LPC envelope. All
paths with solid lines operate in samples, all paths with dashed
lines operate on frames of 15 ms. The path of the gradient
during training is shown in red.

propagated through the LPC filter. This can be achieved by im-
plementing the LPC filtering as an additional DNN layer. Since
the LPC filter is a all-pole IIR filter, this DNN layer should
be a layer with recurrent units. Unfortunately, backpropagating
gradients through a recurrent layer will cause the gradient to
vanish [21] and result in poor training. As a solution to this
problem, the IIR filter coefficients are transformed into FIR
filter coefficients by calculating the truncated impulse response
from the IIR filter. It is known from signal processing that any
IIR filter can be approximated by an FIR filter by truncating
the infinite impulse response [22]. Then, the LPC shaping
can be implemented with a convolutional layer. Fig. 2 shows
the effect of truncating it to 64 samples. While the IIR LPC
envelope is smooth, the truncated FIR envelope has lots of
ripples and does not follow well the IIR envelope in high
frequencies. For this reason the LPC coefficients are multiplied
with an exponential function before calculating the truncated
impulse response âi = ai · 0.8i. The resulting âi coefficients
have less pronounced poles and are suitable for calculating the
FIR envelope as shown in Fig. 2. However, less pronounced
poles result in less shaping and thus not being as efficient as
all-pole IIR coefficients.

Initial experiments have shown that the FIR shaped signal
contains artefacts, which could easily be identified by the
discriminator. As a result, the adversarial loss was not balanced
and the generator was training poor. This could be solved
by calculating the adversarial loss on the real and generated
unshaped excitation signal. The LPC shaping by an FIR filter
is done only during training time. During evaluation time, no
gradient needs to be backpropagated, so the LPC coefficients
are applied as an IIR filter.

The DNN architecture used for extrapolating the excitation
signal is a stack of convolutional neural layers (CNNs) similar
to the previously published system in [23]. One of these layers
is displayed in Fig. 3. Half of the output channels are fed
into tanh-activations and the other half is fed into softmax
activation. Both activations are multiplied over the channel
dimension in order to form the output of each layer. There
is also a residual connection from the input to the output in
order to avoid vanishing gradients and maintain stable and
effective training [24]. Our softmax-gated activations [23] are
more efficient to compute, more robust against reconstruction
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Fig. 2: Transfer functions of an IIR LPC filter of order 12 and
FIR filters resulting from a truncated impulse response.
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Fig. 3: Single layer of the generator network in the CNN-GAN
and the LPC-GAN with softmax-gated activations.

artefacts and have shown faster convergence compared to the
sigmoid-gated activations in WaveNet [25].

The weights of the convolutional kernels are normalised
using weight normalisation [26] to enable stable training
behaviour. We also apply batch normalisation to the output
features from the CNN layers to speed up the training process.
The additional frame-rate network extrapolating LPC coeffi-
cients in the LSF domain operates on the same gated CNNs de-
scribed above, input and output are LSF coefficients, not time-
domain samples. To add more time-context, a final GRU-layer
has been added. To proof the benefits of LPC-GAN, we add
a second system that extrapolates the speech signal directly
without the proposed separation into excitation and envelope.
It is based on the same convolutional architecture described
in III-A only with more kernels. The reason for the increased
model size is that initial experiments with smaller models were
not performing acceptable for a listening test. This system is
denoted CNN-GAN. A stable adversarial training is achieved
by applying spectral normalisation to the convolution kernels
of the discriminator network [27]. This kind of normalisation
enforces the Lipschitz condition to the function learned by
the discriminator, which was found important for an effective
and stable adversarial training procedure. The discriminator
operates in conditional setting [28], hence the input signal
includes the real or fake WB speech waveform concatenated
with the upsampled NB one along the channel dimension.
Each of the convolutional layers operates on kernels of size 32
with strides of 2. It has 6 layers with 16 channels in the first
two layers, 32 channels in next two layers and 64 channels in
the last two layers. No residual connections have been added
and biases for all layers have been omitted. For activation, we
use Leaky ReLU with negative slope of 0.2.

B. Training Objective

The adversarial metric used in this work is the hinge loss
[29]:

Lhinge = max(0, 1− tgt ·D()), (1)

where D() is the the raw output of the discriminator and tgt
is the intended output: 1 for real speech and −1 for generated
speech. Lim et al. [29] showed that hinge loss has less mode
collapse and a more stable training behaviour compared to
the loss used in the initial GAN paper [14] or the Wasserstein
distance [30]. As already observed in [13], [15] the adversarial
loss can be amended by an Lp-norm calculated on samples
and on features. Here we use the L1-norm calculated on

time-domain samples and as feature loss Lmel the L2-norm
calculated on logarithmic Mel energies. The total loss training
the generator is:

L = (1− λ)Lhinge + λ(L1 + Lmel). (2)

IV. EXPERIMENTAL SETUP

As training material we used several publicly available
speech databases [31] as well as other speech items of different
languages. In total, 13 hours of training material were used, all
of it resampled to 16 kHz sampling frequency. Silent passages
in the training data were removed with a voice-activation-
detection [32]. The NB input signal was coded with AMR-NB
at 10.2 kbps. All speech signals were pre-emphasised with
a first order filter E(z) = 1 − 0.68z−1 before entering the
processing chain and the generated speech was inverse (de-
emphasis) filtered with E−1(z) = 1

1−0.68z−1 . The reason for
this is to compensate the spectral tilt of speech which may
result in less pronounced high frequencies in the generated
speech. The LPC envelope of order 12 is extracted on frames
of 128 samples windowed with a Hann window by calculating
the time-domain autocorrelation followed by the Levinson
recursion. Thereafter they are converted to an FIR filter as
explained in Sec. III-A. For the feature loss Lmel, 32 Mel
energies are calculated on frames of 256 Hann-windowed
samples with 50% overlap.

Both, LPC-GAN and CNN-GAN have 20 convolutional
layers wither kernel-size 17 and 32 channels. LPC-GAN
groups the channels into 4 groups, which has a huge impact
on the computational complexity (see Tab.I).

The DNNs are trained with batches of 32 items with each
item containing 1 second of speech. The optimisation algo-
rithm for both the generator and discriminator is Adam [33]
with a generator learning rate of 0.0001 and a discriminator
learning rate of 0.0004. For a more stable adversarial loss,
the coefficients used for computing running averages of the
gradient and its square (the beta-parameters) are set to 0.5
and 0.99 respectively. The factor λ controlling the amount of
feature-loss in Eq. 2 is set to 0.0015.

V. EVALUATION

A. Computational Complexity

The computational complexity of the proposed SRs is an
estimate of weighted million operations per speech-sample
(WMOPS). WMOPS is the ITU unit for calculating computa-
tional complexity [34] of standardised speech processing tools.
Additions (ADD), multiplications (MUL) as well as multiply-
add (MAC) operations are each counted as one operation while
complex operations like tanh, sigmoid or softmax operations
each count as 25 operations. In the following sections, the
number are calculated per speech-sample. This number is
multiplied by the sampling frequency to get an estimate of
the WMOPS. This should be seen as a rough approximation
that does not consider advantages of todays parallel processing
architectures. The results are summarised in Tab. I. Since the
main field of application of SR is in speech coding, Tab. I also
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TABLE I: Computational complexity and algorithmic delay
of the proposed systems and EVS [35], [36], a state-of-the-art
standardised speech codec. WMOPS is the ITU standard for
calculating computational complexity [34] and calculated at a
sampling frequency of 16kHz.

OPS per sample WMOPs algorithmic delay
CNN-GAN: 1 387 897 22 206 22 ms
LPC-GAN: 383 353 6133 22 ms

EVS: - 88 32 ms

contains the computational complexity of EVS [35], [36], the
state-of-the-art standardised speech codec.

B. Algorithmic Delay

The algorithmic delay is the theoretical delay in ms between
the input speech and the processed output speech caused by
block-processing of speech samples. CPU or GPU time are
not considered. The numbers are summarised in Tab. I. The
source of algorithmic delay of the DNNs are the convolutional
operations with kernels of size K. Each convolutional layer
adds an algorithmic delay of ⌊K/2⌋ samples, since ⌊K/2⌋−1
tabs of the kernel are calculated on previous samples and do
not contribute to the delay. The algorithmic delay of the LPC
processing is independent from the convolutional layer and
can be neglected since the delay from the convolutional layers
is always larger.

C. Objective Perceptual Quality

The evaluation of the quality of speech generated by GANs
is a difficult task. In the typical use case GANs generate items
from noise; metrics based on an Lp-norm cannot be used since
there is no reference to compare with. In the following, we
give state-of-the-art objective quality measures to see if they
are able to predict the subjective ratings.

1) Perceptual Objective Listening Quality Analysis: Per-
ceptual Objective Listening Quality Analysis (POLQA) is a
standardised method that aims to predict the perceptual quality
of coded speech signals on the same Mean Opinion Scale
(MOS) used in listening tests [37]. First, masking thresholds
are computed and then different kinds of distortions that
exceed the masking threshold are calculated. These distortions
are mapped to the MOS scale by a neuronal network. The
estimated results are summarized in Fig. 4.

2) Fréchet Deep Speech Distance (FDSD): Since DNNs
trained for recognition tasks are already quite elaborated, their
output may be used for quality estimation. The Fréchet Deep
Speech Distance (FDSD) proposed by Binkowski et al. [38]
uses the raw output of DeepSpeech 2 speech recognition
network [39] to predict the quality of items generated by
GANs. Fig. 4 gives the FDSD scores of the different SRs.

3) Word Error Rate (WER): Besides improving the percep-
tual quality, a SR can also improve the intelligibility of speech
[2] and furthermore, the performance of Automatic Speech
Recognition (ASR) systems. State of the art ASR systems
are based on DNNs trained on uncompressed 16-kHz speech
signals. As a result the performance of such systems drops
significantly when the speech is coded with a NB codec. Fig.

AMR-N
B

CNN-GAN

LPC
-GAN

un
cod

ed
3.0

3.2

3.4

3.6

3.8

4.0

4.2

4.4

M
OS

3.84
3.96 3.9 3.98

AMR-N
B

CNN-GAN

LPC
-GAN

0.0

0.1

0.2

0.3

0.4

0.5

FD
SD

0.543

0.123

0.431

AMR-N
B

CNN-GAN

LPC
-GAN

un
cod

ed
0.30

0.35

0.40

0.45

0.50

0.55

0.60

W
ER

 [%
]

0.58 0.57

0.51

0.45

Fig. 4: Objective quality measures: (left) POLQA - higher values
mean better quality; (middle) FDSD; (right) WER - lower values
mean better quality for FDSD and WER.

ge
r m

ale
 1

ge
r m

ale
 2

ge
r fe

male

ch
in 

male

es
p f

em
ale

fre
n f

em
ale

es
p m

ale

en
gl 

fem
ale

Item

0

20

40

60

80

100

M
O

S
 s

co
re

AMR NB
CNN-GAN
LPC-GAN
reference

Fig. 5: Results from listening test evaluating different SRs as
bar plot with 95% confidence intervals per item.

4 depicts the impact on ASR of coding speech with AMR-
NB. Postprocessing with SRs increases the ASR performance.
The ASR system used here is Mozillas open implementation
of DeepSpeech system [40].

WER is the only objective measure able to predict the
human ratings (see next section).

D. Subjective Perceptual Quality

To ultimately judge the perceptual quality of the proposed
systems, a MUSHRA listening test [41] was conducted. Ac-
cording to the MUSHRA methodology, the test items contain
the reference marked as such, a hidden reference and the
AMR-NB coded signal serving as low anchor. 12 experienced
listeners participated in the test. The speech items used in the
test are about 10 seconds long and neither part of the training
nor the test set. The items contain Chinese, English, French,
German and Spanish speech from native speakers. The results
are presented in Fig. 5. The results show that the proposed
systems significantly improve the quality of AMR-NB speech
for all items. None of the presented systems is significantly
better than the others. The tendentially best system is the LPC-
GAN.

VI. CONCLUSION

This work presents a novel approach for super-resolution
of speech signals applying an established paradigm from the
speech coding world, namely the decomposition of the speech
signal into envelope and excitation signal (a.k.a. the source-
filter model) to GANs. By conducting a listening test we could
show that the perceptual quality is increased while lowering
the computational complexity by a factor of more than 3. The
proposed systems is also able to significantly improve the
perceptual quality of AMR-NB coded speech. Furthermore,
it improves the speech recognition WER of AMR-NB coded
speech.
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