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Abstract—The identification of acoustic impulse responses
usually involves long length adaptive filters, with hundreds
or even thousands of coefficients. This issue raises significant
challenges in terms of both the computational complexity and
convergence features. Recently, a decomposition-based solution
using the Kronecker product and low-rank approximations was
proposed in this context, by exploiting the intrinsic nature of the
acoustic impulse responses. These systems are characterized by
early reflections and late reverberation, each of these components
having different characteristics that should be considered. In
this paper, we propose a Kalman filter following this approach,
which outperforms the previously developed solution based on the
recursive least-squares algorithm. Simulations performed in the
framework of acoustic echo cancellation support the performance
features of the proposed algorithm.

Index Terms—Acoustic impulse response, acoustic echo cancel-
lation, Kalman filter, Kronecker product decomposition, system
identification.

I. INTRODUCTION

System identification problems are frequently addressed
with adaptive filtering algorithms [1]. In this context, the
identification of acoustic impulse responses is an important
task in the framework of many applications related to the
acoustic environment [2]. Nevertheless, the long length of the
impulse response and its time-varying nature impose specific
challenges for the adaptive filter.

A recent approach targets the identification of low-rank sys-
tems based on the nearest Kronecker product decomposition of
the impulse response, in conjunction with bilinear forms [3].
As a result, a long length impulse response can be modeled
using a combination of shorter filters, thus gaining in terms of
both performance and complexity. Due to these features, the
decomposition-based approach has been successfully applied
in the context of different applications related to the acoustic
environment, e.g., see [4]– [13] and the references therein.

This work was supported by two grants of the Ministry of Research, Innova-
tion and Digitization, CNCS–UEFISCDI, projects PN-III-P4-PCE-2021-0438
and PN-III-P4-PCE-2021-0780, within PNCDI III.

More recently, in [14], this approach was further exploited
by taking advantage of the specific structure of acoustic
impulse responses, which are characterized by early reflections
and late reverberation. These components of the impulse
response own different characteristics, so that they can be
processed separately in terms of their low-rank features. As
a consequence, the iterative Wiener filter and recursive least-
squares (RLS) algorithm developed in [14] outperform their
counterparts from [3] and [4], respectively, which do not
consider the intrinsic characteristics of the acoustic impulse
responses. In this paper, we further develop a Kalman filter
following this very recent decomposition-based approach. The
proposed solution has a computational complexity similar to
the RLS algorithm, but it performs better in terms of the
convergence features.

In the following, Section II introduces the system model
that involves the Kronecker product decomposition, while the
proposed solution based on the Kalman filter is developed in
Section III. Simulation results are presented in Section IV,
in the framework of acoustic echo cancellation. Finally, the
conclusions are outlined in Section V.

II. SYSTEM MODEL USING THE KRONECKER PRODUCT

Let us consider the framework of a linear acoustic single-
input single-output (SISO) system, with real-valued signals. In
this context, the reference signal at the discrete-time index n
is given by

d(n) = hT (n)x(n) + v(n) = y(n) + v(n), (1)

where h(n) is the unknown acoustic impulse
response of length L, the superscript T denotes
the transpose operator, the column vector x(n) =[
x(n) x(n− 1) · · · x(n− L+ 1)

]T
contains the

most recent L time samples of the zero-mean input signal
x(n), and v(n) is the zero-mean additive noise [which is
uncorrelated to x(n)], with variance σ2

v = E
[
v2(n)

]
and E[·]

351ISBN: 978-9-4645-9360-0 EUSIPCO 2023



100 200 300 400 500

Samples

-0.2

0

0.2

0.4
A

m
pl

itu
de

(a)

100 200 300 400 500

Samples

-0.02

0

0.02

0.04

A
m

pl
itu

de

(b)

0

0.2

0.4

0.6

0.8

A
m

pl
itu

de

(c)

5 10 15 20

Index

0

0.02

0.04

0.06

A
m

pl
itu

de

(d)

5 10 15 20

Index

Fig. 1. The components of an acoustic impulse response (of length L =
1000) and the singular values of their corresponding matrices: (a) her(n),
(b) hlr(n), (c) singular values of Her(n), and (d) singular values of Hlr(n).
The decomposition setup is Ler = Llr = L/2, with Ler,1 = Llr,1 = 25
and Ler,2 = Llr,2 = 20.

denoting mathematical expectation. In this context, the main
objective is to estimate the L coefficients of the acoustic
impulse response h(n).

As shown in [14], h(n) can be decomposed as

h(n) =
[
hT
er(n) hT

lr(n)
]T

, (2)

where her(n), of length Ler, contains early reflections (plus
the direct path) of the impulse response, and hlr(n), of
length Llr, contains elements of late reverberation of h(n),
with L = Ler + Llr. These two components of the impulse
response are of very different nature, as illustrated in Figs. 1(a)
and (b), where a typical acoustic echo path is considered,
with Ler = Llr

1 and L = 1000. However, both components
have low rank and can be processed separately. In order
to simplify the notation, let ⋆ ∈ {er, lr}. Also, without
loss of generality, let us assume that L⋆ = L⋆,1L⋆,2, with
L⋆,1 ≥ L⋆,2. Thus, each component can be decomposed
as h⋆(n) =

∑L⋆,2

l=1 hl
⋆,2(n) ⊗ hl

⋆,1(n) [3], where ⊗ is the
Kronecker product [15], and hl

⋆,1(n) and hl
⋆,2(n) are short

impulse responses of lengths L⋆,1 and L⋆,2, respectively.
Alternatively, we can express

h⋆(n) = vec
[
H⋆,1(n)H

T
⋆,2(n)

]
= vec [H⋆(n)] , (3)

where vec(·) is the vectorization operation (i.e., converting a
matrix into a column vector, by stacking the columns of the
matrix), H⋆,1(n) =

[
h1
⋆,1(n) h2

⋆,1(n) · · · h
L⋆,2

⋆,1 (n)
]

and H⋆,2(n) =
[
h1
⋆,2(n) h2

⋆,2(n) · · · h
L⋆,2

⋆,2 (n)
]

are
matrices of sizes L⋆,1×L⋆,2 and L⋆,2×L⋆,2, respectively, and
H⋆(n) = H⋆,1(n)H

T
⋆,2(n) is the equivalent matrix (of size

L⋆,1 × L⋆,2) representation of h⋆. In case of the component

1Choosing Ler = Llr = L/2 is the simplest and likely the most practical
setup when no a priori information about the room’s characteristics or the
acoustic impulse response are available.

impulse responses shown in Figs. 1(a) and (b), the singular
values of their corresponding matrices H⋆ are represented in
Figs. 1(c) and (d), respectively, using Ler,1 = Llr,1 = 25 and
Ler,2 = Llr,2 = 20. The faster these singular values decrease
to zero, the farther the column rank of the corresponding
matrix is from its maximum value. Hence, if rank [H⋆(n)] =
P⋆ < L⋆,2, the components of the impulse response can be
decomposed as h⋆(n) =

∑P⋆

p=1 h
p
⋆,2(n)⊗ hp

⋆,1(n).
Based on the previous considerations, it is more reasonable

to process the estimation of her(n) and hlr(n) differently
as they may have different ranks. First, we can rewrite the
components of the impulse response as

h⋆(n) =

P⋆∑
p=1

[
hp
⋆,2(n)⊗ IL⋆,1(n)

]
hp
⋆,1(n)

=

P⋆∑
p=1

Hhp
⋆,2

(n)hp
⋆,1(n) = H⋆,2(n)h⋆,1(n), (4)

with IL⋆,1 the L⋆,1 × L⋆,1 identity matrix,
Hhp

⋆,2
(n) = hp

⋆,2(n) ⊗ IL⋆,1 , H⋆,2(n) =[
Hh1

⋆,2
(n) Hh2

⋆,2
(n) · · · HhP⋆

⋆,2
(n)

]
has the

size L⋆ × P⋆L⋆,1, and the column vector h⋆,1(n) =[ (
h1
⋆,1

)T
(n)

(
h2
⋆,1

)T
(n) · · ·

(
hP⋆
⋆,1

)T

(n)

]T
has the

length P⋆L⋆,1. Alternatively, we can rewrite

h⋆(n) =

P⋆∑
p=1

[
IL⋆,2 ⊗ hp

⋆,1(n)
]
hp
⋆,2(n)

=

P⋆∑
p=1

Hhp
⋆,1

(n)hp
⋆,2(n) = H⋆,1(n)h⋆,2(n), (5)

where IL⋆,2 is the L⋆,2 × L⋆,2 identity matrix,
Hhp

⋆,1
(n) = IL⋆,2 ⊗ hp

⋆,1(n), H⋆,1(n) =[
Hh1

⋆,1
(n) Hh2

⋆,1
(n) · · · HhP⋆

⋆,1
(n)

]
is a matrix

of size L⋆ × P⋆L⋆,2, and the column vector h⋆,2(n) =[ (
h1
⋆,2

)T
(n)

(
h2
⋆,2

)T
(n) · · ·

(
hP⋆
⋆,2

)T

(n)

]T
has

P⋆L⋆,2 elements. Next, the input signal vector can also be
decomposed as x(n) =

[
xT
er(n) xT

lr(n)
]T

, where xer(n)
and xlr(n) are the parts of the input signal related to early
reflections and late reverberation, respectively. Thus, the
reference signal in (1) can be written in two equivalent forms:

d(n) = h
T

:1(n)

[
HT

er,2(n)xer(n)

HT
lr,2(n)xlr(n)

]
+ v(n) (6)

= h
T

:2(n)

[
HT

er,1(n)xer(n)

HT
lr,1(n)xlr(n)

]
+ v(n), (7)

where h:1(n) =
[
hT
er,1(n) hT

lr,1(n)
]T

has PerLer,1 +

PlrLlr,1 coefficients and h:2(n) =
[
hT
er,2(n) hT

lr,2(n)
]T

has PerLer,2 + PlrLlr,2 coefficients. It can be noticed that the
original SISO system identification problem that targets the
estimation of L coefficients [of h(n)] can be solved based
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on a combination of two filters, h:1(n) and h:2(n), according
to (6) and (7). For the common values of the decomposition
parameters (i.e., L⋆,1, L⋆,2, and P⋆), the total number of
coefficients to be estimated can be much smaller than L.

III. DECOMPOSITION-BASED KALMAN FILTER

In order to develop a Kalman filter based on the previous
approach, let us consider that the two impulse responses from
(6) and (7) are zero-mean random vectors, which follow the
simplified first-order Markov models:

h:1(n) = h:1(n− 1) +w1(n), (8)

h:2(n) = h:2(n− 1) +w2(n), (9)

where w1(n) and w2(n) are zero-mean white Gaussian noise
vectors, which are uncorrelated to h:1(n− 1) and h:2(n− 1),
respectively. The previous relations from (8) and (9) represent
the state equations, while (6) and (7) are the observation
equations. In this “bilinear” framework, the optimal estimates
of h:1(n) and h:2(n) recursively result based on the linear
sequential Bayesian approach [16] as

ĥ:1(n) = ĥ:1(n− 1) + k1(n)e(n), (10)

ĥ:2(n) = ĥ:2(n− 1) + k2(n)e(n), (11)

where k1(n) and k2(n) are the Kalman gain vectors [17],
while e(n) denotes the a priori estimation error, which can be
evaluated based on (6) and (7). Also, in a more compact form,

e(n) = d(n)− ĥ
T

:1(n− 1)x:2(n) (12)

= d(n)− ĥ
T

:2(n− 1)x:1(n), (13)

where

x:2(n) =

[
Ĥ

T

er,2(n− 1)xer(n)

Ĥ
T

lr,2(n− 1)xlr(n)

]
,

x:1(n) =

[
Ĥ

T

er,1(n− 1)xer(n)

Ĥ
T

lr,1(n− 1)xlr(n)

]
,

and Ĥ
T

⋆,2(n) and Ĥ
T

⋆,1(n) are constructed in a similar way to
H⋆,2(n) and H⋆,1(n), respectively [according to (4) and (5)],
using the estimates from (10) and (11).

Next, we define the a priori and a posteriori misalignments
associated to the optimal estimates of the state vectors:

m1(n) = h:1(n)− ĥ:1(n− 1), m2(n) = h:2(n)− ĥ:2(n− 1),

m̃1(n) = h:1(n)− ĥ:1(n), m̃2(n) = h:2(n)− ĥ:2(n).

Based on the state equations, it can be noticed that m1(n) =
m̃1(n− 1)+w1(n) and m2(n) = m̃2(n− 1)+w2(n). Thus,
in terms of the associated correlation matrices, we obtain

Rm1(n) = Rm̃1
(n− 1) +Rw1(n), (14)

Rm2(n) = Rm̃2
(n− 1) +Rw2(n), (15)

where

Rm1(n) = E
[
m1(n)m

T
1 (n)

]
, Rm̃1

(n) = E
[
m̃1(n)m̃

T
1 (n)

]
,

Rm2
(n) = E

[
m2(n)m

T
2 (n)

]
, Rm̃2

(n) = E
[
m̃2(n)m̃

T
2 (n)

]
,

Rw1(n) = E
[
w1(n)w

T
1 (n)

]
= σ2

w1
(n)IPerLer,1+PlrLlr,1

,

Rw2(n) = E
[
w2(n)w

T
2 (n)

]
= σ2

w2
(n)IPerLer,2+PlrLlr,2

,

while the variances σ2
w1

(n) and σ2
w2

(n) that multiply the
identity matrices of the corresponding sizes (indicated in
subscripts) capture the uncertainties in the state vectors.

The Kalman gain vectors required in the updates (10) and
(11) are obtained by minimizing the optimization criteria:

J1(n) = (PerLer,1 + PlrLlr,1)
−1

tr [Rm̃1
(n)] , (16)

J2(n) = (PerLer,2 + PlrLlr,2)
−1

tr [Rm̃2
(n)] , (17)

where tr [·] denotes the trace of a square matrix. The devel-
opment of (16) and (17) is based on a bilinear optimization
strategy [18], [19], considering that one of the systems is fixed
within the optimization criterion of the other one. Similar
strategies were adopted in [3]– [5] and [14]. Following this
approach, the Kalman gain vectors result in

k1(n) = Rm1(n)x:2(n)
[
xT
:2(n)Rm1(n)x:2(n) + σ2

v

]−1
,

(18)

k2(n) = Rm2
(n)x:1(n)

[
xT
:1(n)Rm2

(n)x:1(n) + σ2
v

]−1
,

(19)

while the matrices Rm̃1
(n) and Rm̃2

(n) are obtained as

Rm̃1
(n) = Rm1(n)− k1(n)x

T
:2(n)Rm1(n), (20)

Rm̃2
(n) = Rm2(n)− k2(n)x

T
:1(n)Rm2(n). (21)

Finally, the coefficients of ĥ:1(n) and ĥ:2(n) can be combined
based on (2) and (4)–(7), in order to obtain an estimate of the
global impulse response, ĥ(n).

The resulting Kalman filter based on the Kronecker product
decompositions, namely KF-KPD, is defined by equations
(10)–(15) and (18)–(21). There are some parameters that have
to be set or estimated within the KF-KPD. The first one is σ2

v ,
which represents the variance of the additive noise. For exam-
ple, in many applications related to the acoustic environment,
the power of the background noise can be estimated during
silence periods [2]. Other practical methods for estimating
σ2
v can be found in [20]. The other parameters that should

be set are σ2
w1

(n) and σ2
w2

(n), and they are related to the
uncertainties in the system. The choice of these parameters
leads to a compromise between the tracking capabilities and
the accuracy of the estimates. Small values of σ2

w1
(n) and

σ2
w2

(n) lead to a good accuracy (i.e., low misalignment), but
reducing the tracking capabilities of the filter. On the other
hand, increasing the values of these parameters improves the
tracking behavior, while paying with a less accurate solution
(i.e., high misalignment). A very simple method to evaluate
these parameters is inspired from [21] and it is related to
the uncertainties in the global filter. Therefore, we can set

σ2
w1

(n) = σ2
w2

(n) = (1/L)
∥∥∥ĥ(n)− ĥ(n− 1)

∥∥∥2
2
, where ∥ · ∥2
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denotes the Euclidean norm. In this case, when the KF-
KPD starts to converge or when there is an abrupt change
of the system to be identified, the difference between the
estimates at consecutive time indexes is large, and so are
the values of the uncertainties parameters. Contrary, when the
algorithm is converging to its steady-state, this difference is
reducing, together with the values of σ2

w1
(n) and σ2

w2
(n).

An alternative (more elaborated) method involves individual
control factors [22], by considering independent fluctuations
for each coefficient [using different values on the diagonal of
the matrices Rw1(n) and Rw2(n)]. However, the influence of
these methods on the performance of the KF-KPD is beyond
the scope of this paper.

In terms of the computational complexity, the conventional
Kalman filter involves a computational amount proportional
to O(L2). This could be prohibitively expensive for most
of the practical applications that require the identification of
acoustic impulse responses, due to the very large values of
L. As shown before, the proposed KF-KPD combines the
coefficients of two shorter filters of lengths PerLer,1+PlrLlr,1

and PerLer,2 + PlrLlr,2, where L = Ler,1Ler,2 + Llr,1Llr,2,
while Per < Ler,2 and Plr ≪ Llr,2 [14]. Even if the compu-
tational complexity of the KF-KPD is still proportional to the
square of the filters’ lengths, it is more advantageous as com-
pared to the conventional Kalman filter. In addition, improved
performance is expected for the KF-KPD, in terms of the
convergence and accuracy features. The proposed algorithm
performs similar to the previously developed Kalman filter
based on the nearest Kronecker product decomposition (KF-
NKP) [5]. However, the KF-NKP performs the decomposition
using two filters of length PL1 and PL2, with L = L1L2 and
P < L2, thus involving O

[
(PL1)

2 + (PL2)
2
]

operations. On
the other hand, the proposed KF-KPD has the complexity order
O
[
(PerLer,1 + PlrLlr,1)

2 + (PerLer,2 + PlrLlr,2)
2
]
, so that is

more advantageous in terms of the computation complexity,
for the common setup of its parameters.

IV. SIMULATION RESULTS

Simulations are performed in the context of acoustic echo
cancellation. Two measured acoustic impulse responses are
used in the experiments, with L = 1000. They have different
sparseness degrees [23], which are evaluated using the measure
ξ12 [h(n)] = L/(L −

√
L)

{
1− ∥h(n)∥1/[

√
L∥h(n)∥2]

}
,

where ∥·∥1 stands for the ℓ1 norm (i.e., the sum of the absolute
values of the coefficients). Clearly, 0 ≤ ξ12 [h(n)] ≤ 1. A
smaller value of this measure is related to a denser impulse
response, so that its corresponding matrix is closer to full-
rank, while a larger value of the sparseness measure implies
a sparser impulse response and a lower rank of the corre-
sponding matrix. The performance measure used in all the
experiments is the normalized misalignment (in dB), which is
evaluated as 20log10

[∥∥∥h(n)− ĥ(n)
∥∥∥
2
/ ∥h(n)∥2

]
.

In the following, the two acoustic impulse responses are
referred as hα and hβ ; the second one was used for the
example provided in Fig. 1. Their sparseness measures are
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Fig. 2. Normalized misalignment of the KF-KPD using Plr = 2 and different
values of Per. The input signal in an AR(1) process and the echo path changes
after 5 seconds (from hα to hβ ).

ξ12 (hα) = 0.7384 and ξ12 (hβ) = 0.6846. Two input signals
are used in simulations, with a sampling rate of 8 kHz. The
first one is an autoregressive (AR) process obtained by filtering
a white Gaussian noise through a first-order AR model [AR(1)]
with a pole at 0.9. The second one is a recorded speech signal.
The background noise v(n) is white and Gaussian, with a
signal-to-noise ratio (SNR) of 20 dB. The SNR is evaluated
based on (1) as SNR = σ2

y/σ
2
v , where σ2

y denotes the variance
of y(n). We consider that σ2

v is available in the experiments.
The decomposition setup for the KF-KPD is the same used

in Fig. 1, i.e., Ler,1 = Llr,1 = 25 and Ler,2 = Llr,2 = 20.
Based on the findings from [14], a value of Plr ≪ Llr,2

is recommended, which is also justified in Fig. 1(d). Conse-
quently, we set Plr = 2 in all the following experiments. First,
in Fig. 2, the performance of the KF-KPD is evaluated for
different values of Per < Ler,2. The input signal is an AR(1)
process and the echo path changes after 5 seconds (from hα

to hβ). As we can notice, the performance is improved when
increasing the value of Per, but up to a limit that is related
to the approximated rank of Her(n), as indicated in Fig. 1(c).
Also, it can be noticed that a better performance is obtained
for the identification of the sparser impulse response, since
the approximated rank of its corresponding matrix is lower in
this case. Nevertheless, for both impulse responses, a value
of Per = 8 (which is reasonably lower than Ler,2) leads to a
good attenuation of the misalignment.

A similar setup is used in Fig. 3, where the KF-KPD is
compared to the recently developed RLS-KPD algorithm [14]
using different values of the forgetting factors, which are
chosen as λ1 = 1 − 1/ [K (PerLer,1 + PlrLlr,1)] and λ2 =
1 − 1/ [K (PerLer,2 + PlrLlr,2)], with K > 1, Per = 8,
and Plr = 2. As we can notice, increasing the forgetting
factors of the RLS-KPD algorithm (i.e., using larger values
of K) improves the misalignment, but sacrifices the tracking
capability. On the other hand, the proposed KF-KPD achieves
a better compromise between the performance criteria.

Finally, in Fig. 4, the conventional Kalman filter (KF) is

354



0 5 10 15

Time (seconds)

-25

-20

-15

-10

-5

0

5

N
or

m
al

iz
ed

 m
is

al
ig

nm
en

t (
dB

)

RLS-KPD, K = 5
RLS-KPD, K = 10
RLS-KPD, K = 20
RLS-KPD, K = 40
KF-KPD

Fig. 3. Normalized misalignment of the RLS-KPD algorithm [14] using
different values of the forgetting factors (i.e., different values of K) and the
KF-KPD. Both algorithms use the same decomposition setup, with Per = 8
and Plr = 2. The input signal in an AR(1) process and the echo path changes
after 5 seconds (from hα to hβ ).

0 1 2 3 4 5 6 7 8 9 10

Time (seconds)

-25

-20

-15

-10

-5

0

N
or

m
al

iz
ed

 m
is

al
ig

nm
en

t (
dB

)

KF
KF-KPD, P

er
 = 8

KF-KPD, P
er

 = 10

KF-KPD, P
er

 = 12

Fig. 4. Normalized misalignment of the conventional KF and the KF-KPD
using Plr = 2 and different values of Per, for the identification of the impulse
response hα. The input signal is speech.

compared to the KF-KPD using Plr = 2 and different values
of Per. In this experiment, the input signal is speech and
the impulse response hα is considered. Since the proposed
KF-KPD combines the solution of two shorter filters, it
outperforms the conventional KF in terms of the convergence
features. This gain can be noticed even for Per = 8, while the
performance of the KF-KPD is improving for larger values of
this decomposition parameter.

V. CONCLUSIONS

In this paper, we have developed a Kalman filter for the
identification of acoustic impulse responses, which uses Kro-
necker product decompositions and low-rank approximations.
In this framework, the different characteristics of the two main
components of the acoustic impulse response (i.e., early reflec-
tions and late reverberation) are exploited. The resulting KF-
KPD outperforms the previously developed RLS-KPD [14] in
terms of the main convergence criteria.
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[2] E. Hänsler and G. Schmidt, Acoustic Echo and Noise Control–A Prac-
tical Approach. Hoboken, NJ, USA: Wiley, 2004.

[3] C. Paleologu, J. Benesty, and S. Ciochină, “Linear system identification
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