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Abstract—Speech dereverberation aims to mitigate the impact
of late-reverberant components. As a typical approach to dere-
verberation, the weighted prediction error (WPE) method has
shown its superior performance, however it is still possible to
further improve its performance and robustness by incorporating
sophisticated speech priors. Recent research demonstrates that
the integration of physics-based and data-driven methods can
improve the performance of various signal processing tasks while
maintaining the interpretability of the problem solving process.
Motivated by the relevant progress, this paper presents a novel
dereverberation framework that incorporates the data-driven
method for speech prior capturing for WPE. The plug-and-play
strategy (PnP), specifically the regularization by denoising (RED)
strategy, is used to incorporate speech prior information during
the alternating direction method of multipliers (ADMM) solving
iterations by plugging in a pre-trained speech denoiser. Exper-
imental results demonstrate the effectiveness of the proposed
method1.

Index Terms—Speech dereverberation, the weighted prediction
error method, data-driven method, learnt speech priors

I. INTRODUCTION

The speech signals captured by microphones in an enclosed
room unavoidably contain reverberant components, resulting
in a degradation of the quality of interested speech and further
impairing the automatic speech recognition system. Therefore,
speech dereverberation techniques have been widely investi-
gated [1]–[3]. These techniques aim at eliminating the late-
reverberant components and preserving the direct-path and
early-reverberant components, since the former are detrimental
to both speech intelligibility and quality [4], [5].

Extensive works have been devoted to devising speech
dereverberation methods, which can be primarily divided into
conventional physics-based and data-driven algorithms. The
former usually solves the dereverberation problem based on
the speech convolution model, possessing a clear physical
interpretation. Among the numerous physics-based dereverber-
ation techniques [6]–[8], the class of multichannel linear pre-
diction methods [9] is, to our knowledge, the most promising.
Built on this, the weighted prediction error (WPE) method [10]
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in particular shows its effectiveness in dereverberation. In
order to further enhance the performance, the work in [11] and
[12] propose to exploit speech sparsity in the time-frequency
domain to incorporate an additional prior on the unknown
variance.

Recent data-driven methods [13], [14] heavily rely on deep
learning and have become a hotspot due to their superior
capability to excavate high-level features. This kind of method
aims to learn a mapping function from the input signals to
the output clear speech with the speech priors embedding in
the network parameters. However, it is a black-box and may
lack physical interpretability and generalizability. Recently, the
integration of physics-based methods and data-driven methods
has received considerable attention in the signal processing
community [15]–[17]. For instance, in [18] a deep neural
network-based spectrum estimator is incorporated into the
vanilla WPE to boost dereverberation performance. Although
useful, this work does not extract structural information of the
speech spectrum from data. Among several possible strategies,
the plug-and-play technique (PnP), which plugs deep denois-
ing algorithms as a module into the optimization iterations
to capture data priors, has been successfully investigated for
various tasks [19]–[21].

Inspired by this advance, we intend to establish a framework
for speech dereverberation that benefits from both the physics-
based model and data priors. Specifically, we formulate the
prediction error minimization problem of WPE with an addi-
tional regularizer that is not explicitly handcrafted. In contrast
to the vanilla WPE method and extensions [11], [12], [18] that
do not take into account sophisticated speech priors, integrat-
ing speech prior information learnt from data is expected to
be advantageous. To this end, the PnP strategy, specifically
the regularization by denoising (RED) strategy [22], is used
to incorporate speech prior information during the alternating
direction method of multipliers (ADMM) [23] solving itera-
tions using a pre-trained speech denoiser. Experimental results
validate the proposed method and show its improvement in
performance and robustness over WPE.

Notation. Normal font letters x and X denote scalars, and
boldface small letters x denote column vectors. Boldface
capital letters X represent matrices, and the operator (·)>
and (·)H denote matrix transpose and conjugate transpose
respectively.
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II. PROBLEM FORMULATION

We consider the signal model under the scenario where
a microphone array with Q channels captures the convolved
speech with additive noise. In time domain, the observed signal
of q-th channel can be represented by:

xq(t) = hq(t) ∗ s(t) + yq(t), (1)

where hq(t) is the acoustic impulse response between the
source and the microphone, s(t) is the source speech, ∗
denotes the linear convolution, and yq(t) is the zero-mean
additive noise that is independent of s(t). Signal model (1)
can be approximated in short-time Fourier transform (STFT)
domain by [10]:

Xq(n, k) =

J−1∑
j=0

Hq(j, k)S(n− j, k) + Yq(n, k), (2)

where n and k are the time-frame and frequency bin indices
respectively, J denotes the order of Hq(n, k) which is the
hq(t) in STFT domain, Xq(n, k), S(n, k) and Yq(n, k) rep-
resent the counterparts of xq(t), s(t) and yq(t) in the STFT
domain respectively.

Considering the multichannel linear prediction dereverber-
ation process, the desired speech can be estimated by:

Ŝ(n, k)=Xref(n, k)−wH(k)x(n−D, k), (3)

where x(n − D, k) is constructed by stacking {[Xq(n −
D, k), Xq(n − D − 1, k), · · · , Xq(n − D − L + 1, k)]>}Qq=1

to form a vector of length LQ = Q × L with L being the
filter order and D being a predefined delay, wH(k) is the
filter weight vector of length LQ, and Xref(n, k) denotes
the reference signal which can be randomly chosen at any
microphone. The WPE method seeks the filter weight vector
by optimizing the following cost function:

JWPE

(
{w(k)}Kk=1

)
=

K∑
k=1

N∑
n=1

|Ŝ(n, k)|2

σ(n, k)
+ log πσ(n, k),

(4)
with Ŝ(n, k) defined in (3), and σ(n, k) is the estimate of
the speech variance at frame n and frequency bin k. Since
the prediction error Ŝ(n, k) is considered the desired signal, it
is beneficial to introduce a regularization term to incorporate
speech priors for Ŝ(n, k):

JWPE Reg

(
{w(k)}Kk=1

)
= JWPE

(
{w(k)}Kk=1

)
+βJReg

(
Ŝ
)
,

(5)
where β is a trade-off parameter, JReg denotes a regularizer,
and Ŝ is the speech time-frequency matrix consisting of
{Ŝ(n, k)}N,Kn,k=1

2. Designing a good regularizer JReg along
with an efficient solving method is not a trivial task. Instead,
we propose to learn priors from speech data and incorporate
them into the mathematics-based optimization to address this
problem based on the PnP strategy. Particularly, we consider
JReg in the form of:

2Note that the similar definition will be used for the other bold capital
letters, such as R, V and P.

JReg

(
Ŝ
)

=
1

2
ŜH
[
Ŝ− Ω(Ŝ)

]
, (6)

where Ω(·) denotes an off-the-shelf denoiser. This form is
called RED, which is an effective regularizer with favorable
derivative properties under mild assumptions [22].

III. SOLVING METHOD AND NETWORK DESIGN

In this section, we present the solving method for the
problem defined by equations from (3) to (6), and the way
to integrate data-driven speech priors with a denoising deep
neural network.

A. Variable splitting based on ADMM
To solve the problem, we first introduce new variables

R(n, k) into the problem with additional equality constraints,
leading to the following problem formulation:

min
w(k),R,V

K∑
k=1

N∑
n=1

|R(n, k)|2

σ(n, k)
+ log πσ(n, k) +

β

2
RH
[
R− Ω(R)

]
s.t. R(n, k) = Xref(n, k)−wH(k)x(n−D, k)− V (n, k)

E(R) = σ2
norm,

(7)
where V (n, k) denotes the additive noise in the modeling and
processing3, E(·) represents the energy of the argument signal,
and σ2

norm denotes a predefined signal energy. Note that the
energy constraint is introduced to ensure the uniqueness of
the solution. Future extended manuscript will elaborate on the
rationale behind the introduction of the noise term V (n, k) and
energy normalization in problem (7), which differs from the
typical PnP procedure. The corresponding (scaled) augmented
Lagrangian function is defined as:

L
(
w(k)Kk=1,R,V,P

)
=JWPE +

β

2
RH
[
R− Ω(R)

]
+
ρ

2

K∑
k=1

N∑
n=1

(∣∣[Xref(n, k)−wH(k)

× x(n−D, k)]−V (n, k)−R(n, k)+P (n, k)
∣∣2−|P (n, k)|2

)
,

(8)
where P (n, k) is the scaled dual variable, and ρ is the penalty
parameter. The ADMM decouples the optimization of (8) into
solving subproblems over iteration index ` as follows.
1) Step 1 — Optimization with respect to w(k): The opti-

mization of (8) reduces to:

w(`+1)(k) = argmin
w(k)

JWPE +
ρ

2

K∑
k=1

N∑
n=1

∣∣Xref(n, k)

− [w(`)(k)]Hx(n−D, k)− V (`)(n, k)

−R(`)(n, k) + P (`)(n, k)
∣∣2.

(9)

The optimization w.r.t. w(k) is a separable least square
problem and can be then solved by

w(`+1)(k) = [R
(`+1)
x (k)]−1p

(`+1)
x (k), (10)

3Note that for the situation without noise, we can set V to 0 and simplify
the optimization process, then R reduces to S in (5) and (6).
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where

R
(`+1)
x (k) =

N∑
n=1

x(n−D, k)[x(n−D, k)]H

λ(`+1)(n, k)
(11)

and

p
(`+1)
x (k) =

N∑
n=1

x(n−D, k)X̃(`+1)(n, k)

λ(`+1)(n, k)
. (12)

In the above solution, λ(`+1)(n, k) is given by

λ(`+1)(n, k) =
2σ(`)(n, k)

2 + ρσ(`)(n, k)
, (13)

and X̃(`+1)(n, k) is given by

X̃(`+1)(n, k) =Xref(n, k)− ρ

2
λ(`+1)(n, k)

[
R(`)(n, k)

+ V (`)(n, k)− P (`)(n, k)
]
.

(14)
By substituting w(k) of each band into (3), we can
construct matrix Ŝ which will be used in the following
steps, and estimate σ(n, k) based on Ŝ(n, k) as [10]:

σ(`+1)(n, k) = |Ŝ(`)(n, k)|2. (15)

2) Step 2 — Optimization with respect to R: The optimization
problem (8) now reduces to

R(`+1) = argmin
R

ρ

2

∥∥Ŝ(`+1) −V(`) −R(`) + P(`)
∥∥2

+
β

2
[R(`)]H

[
R(`) − Ω(R(`))

]
.

(16)
From the perspective of RED [22], the prior properties of
speech can be incorporated in (16) by applying a denoising
processing to speech R̃(`+1) = Ŝ(`+1) −V(`) + P(`). The
solution to this problem can be achieved via the fixed-point
iteration:

R(`+1,i) = µR̃(`+1,i) + (1− µ)Ω(R̃(`+1,i); Θ) (17)

with µ = ρ
ρ+β and inner iteration i = 1, · · · , I , where

Θ denotes the parameters of the denoiser. Considering
the energy normalization in (7), we also conduct the
normalization

R(`+1) =
R(`+1)

E(R(`+1))
σ2
norm, (18)

where σ2
norm = E(Ŝ(`+1)).

3) Step 3 — Optimization with respect to V: Here, the
solution of this optimization problem readily writes:

V(`+1) = Ŝ(`+1) −R(`+1) + P(`). (19)

4) Step 4 — Update of P: This dual variable is updated in
the standard manner:

P(`+1) = P(`) + Ŝ(`+1) −V(`+1) −R(`+1). (20)

Variables w(k), R, V and P are updated until convergence,
and output R will be used as the estimated speech.
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Fig. 1. Diagram of the BLSTM-based denoiser.

B. BLSTM-based denoiser

Any denoiser can be used for (17) to incorporate speech
priors, making the proposed framework flexible. To focus on
the main idea of this work, here we simply train a bidirectional
long short-term memory (BLSTM)-based denoiser for illustra-
tive purpose. As illustrated in Fig. 1, the denoising network
contains two combined layers from bottom-up followed by
a mask estimation layer. Each combined layer consists of a
BLSTM layer and a Rectifier Linear Unit (ReLU) activation
function layer. Applying magnitude of the noisy speech (de-
noted by |Z|) as the input feature, the network is trained to
predict the phase sensitive mask [24] for the target speech
(denoted by M̂) via the magnitude and temporal spectrum
approximation loss, defined by [25]:

JDenoiser =
1

N

∑(
‖ M̂� |Z| − |A| � cos(θZ − θA) ‖2F

+wd ‖ fd(M̂� |Z|)− fd(|A| � cos(θZ − θA)) ‖2F
+wc ‖ fc(M̂� |Z|)− fc(|A| � cos(θZ − θA)) ‖2F

)
,

(21)
where � is the Hadamard product, |A| is the magnitude of
the clean speech, and θZ and θA represent phase angles of
the noisy speech and the clean speech respectively. Taking
the dynamic information into consideration, we employ the
functions (i.e., fd(·) and fc(·)) to calculate increment and
acceleration [26], with the weights wd and wc set to 4.5 and
10.0 respectively. The network is independently trained, and
can be plugged into the proposed framework.

IV. EXPERIMENTAL RESULTS

In this section, we validate the proposed method and com-
pare it with other methods in several respects.
Data-driven prior construction: To train a blind denoiser,
we added the white Gaussian noise to the clean speech signals
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Fig. 2. The visualization results of all comparison methods at SNR = 20 dB with T60 = 786 ms.

Table 2 lists the performance of WPE and the proposed method in
the scenario of reverberation without noise, with ρ and µ setting to
7.5 and 0.08 respectively. From the overall comparison results, we
can conclude that our proposed algorithm preserves its advantage in
these noise-free cases.

5. CONCLUSION

In this paper, we proposed a method for incorporating data-driven
speech priors to improve the performance and robustness of WPE.
For this purpose, a plug-and-play strategy based on variable split-
ting with ADMM, specifically the RED strategy, was employed.
A BLSTM-based denoiser was designed and plugged into the op-
timization steps for capturing the prior from data. We found experi-
mentally that the proposed method can effectively handle reverbera-
tion scenarios with or without additive noise. Future research inves-
tigates in depth the effects of various denoisers and the performance
of the method under non-Gaussian noise.
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Fig. 2. The visualization results of all comparison methods at SNR = 20 dB and T60 = 786 ms, with the speech truncated to 2 s.

TABLE I
THE RESULTS OF ALL COMPARISON METHODS UNDER THE SCENARIOS OF
REVERBERATION WITH NOISE OF DIFFERENT LEVELS. THE BEST RESULTS

ARE IN BOLD AND THE SECOND BEST RESULTS ARE UNDERLINED.

SNR Methods SDR STOI PESQ CD(dB) (dB)

0

Observed -3.87 0.46 1.33 8.31
WPE -4.33 0.49 1.29 8.42

Denoiser only 0.94 0.51 1.95 7.71
Denoiser+WPE 3.65 0.52 2.03 6.67

Proposed 5.58 0.58 1.80 7.03(ρ = 12.08 , µ = 0.15)

10

Observed speech 0.35 0.59 1.81 7.61
WPE 3.76 0.65 1.80 7.90

Denoiser only 1.29 0.66 2.00 7.30
Denoiser + WPE 8.67 0.70 2.32 5.06

Proposed 10.06 0.74 2.11 6.91(ρ = 10.30 , µ = 0.55)

20

Observed speech 1.14 0.66 1.97 6.13
WPE 11.74 0.79 2.40 6.85

Denoiser only 1.20 0.68 1.97 4.64
Denoiser + WPE 13.02 0.81 2.51 4.76

Proposed 14.78 0.84 2.91 4.21(ρ = 15.25 , µ = 0.55)

30

Observed speech 1.23 0.69 2.02 4.81
WPE 15.64 0.86 2.81 5.36

Denoiser only 1.24 0.70 2.02 4.32
Denoiser + WPE 15.64 0.86 2.84 4.42

Proposed 16.45 0.87 3.19 3.81(ρ = 7.81 , µ = 0.13)

40

Observed speech 1.24 0.70 2.04 4.27
WPE 16.68 0.88 3.06 4.03

Denoiser only 1.24 0.70 2.02 4.45
Denoiser + WPE 16.64 0.88 3.09 3.55

Proposed 17.03 0.88 3.21 3.37(ρ = 6.32 , µ = 0.29)

randomly chosen from the Wall Street Journal dataset [27]. A
training set with 20,000 utterances and a validation set with
5000 utterances at various signal-noise ratios (SNRs) between
-5 dB and 40 dB were obtained. Each utterance was split into
4 s with a sampling rate of 16 kHz. We implemented the
BLSTM-based denoiser based on Adam optimizer [28] with
an initial learning rate of 0.0005 and a mini-batch of 32 to
minimize the loss function (21) in 60 epochs. The proposed
framework was implemented in the STFT domain using a
Hann window, where the frame length was 32 ms of 75%
overlapping. For the proposed framework, we set L = 16,
D = 2 and I = 5 respectively in our experiments.
Method comparison and evaluation: To test the method, we
generated a test set by randomly choosing 4-channel speech

TABLE II
THE COMPARISON RESULTS OF WPE AND THE PROPOSED METHOD

UNDER THE SCENARIO OF REVERBERATION WITHOUT NOISE.

T60 (ms) Methods SDR (dB) STOI PESQ CD

265
Observed 14.66 0.93 2.97 2.14

WPE 15.54 0.95 3.24 2.20
Proposed 15.62 0.95 3.40 2.05

419
Observed 7.18 0.74 2.08 4.16

WPE 18.23 0.94 3.18 3.27
Proposed 18.31 0.94 3.23 3.13

786
Observed 1.24 0.71 2.04 4.25

WPE 16.87 0.90 3.19 2.98
Proposed 17.16 0.90 3.19 2.99

from Libri-adhoc40-simu corpus [29] with the reverberation
time (T60) being 265 ms, 419 ms and 786 ms. Both noise-free
and noisy cases were tested. Considering the scenario of rever-
beration with noise, we added the white Gaussian noise to the
convolved speech of T60 = 786 ms, and SNRs were set to 0 dB,
10 dB, 20 dB, 30 dB, and 40 dB respectively. We compared the
vanilla WPE, denoiser-only method, intuitive concatenation of
the denoiser and WPE (denoted by Denoiser+WPE) and the
proposed method.

For evaluation metrics, we adopted signal to distortion
ratio (SDR) [30], perceptual evaluation of speech quality
(PESQ) [31], short-time objective intelligibility (STOI) [32]
and cepstral distance (CD) [33] in our experiments. In gen-
eral, for SDR, PESQ and STOI, larger values indicate better
performance, while for CD, smaller values indicate better
performance.
Results: The comparison results of all evaluation metrics in
the scenario of reverberation with additive white Gaussian
noise are reported in Table I. From the table, we can see that
the proposed method outperforms other compared methods
in most noisy cases. Although the PESQ and CD values
of the proposed method are relatively inferior to those of
Denoiser+WPE at SNR = 0 dB and SNR = 10 dB, the SDR
and STOI values of the former perform better than the latter.
For visual comparison, we take the scenario SNR = 20 dB as
an example, shown in Fig. 2.

We further compare the performance of the vanilla WPE
with the proposed method in the scenario of reverberation
without noise. Table II lists the results, where ρ and µ are
set to 7.5 and 0.08 for the proposed method respectively.
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From the overall comparison results, we can conclude that our
proposed algorithm still maintains its advantages, with slightly
better performance compared to the vanilla WPE in purely
reverberant conditions.

V. CONCLUSION

In this paper, we proposed a method for incorporating
data-driven speech priors to improve the performance and
robustness of WPE. For this purpose, a PnP strategy based on
variable splitting with ADMM, specifically the RED strategy,
was employed. A BLSTM-based denoiser was designed and
plugged into the optimization steps for capturing the prior
from data. We found experimentally that the proposed method
can effectively handle reverberation scenarios with or without
additive noise. Future research investigates in depth the effects
of various denoisers and the performance of the method under
non-Gaussian noise.
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