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Abstract—Recently, the nearest Kronecker product (NKP)
decomposition has become popular in several adaptive filtering
(AF) applications owing to its fast convergence and tracking ability.
In this paper, we study the nature of the smaller weight vectors
resulting from NKP decomposition (NKPD) of a wide range of
acoustic impulse responses (IRs). The study shows that the smaller
weight vectors resulting from NKPD exhibit moderate to high
degree of sparsity. To exploit this knowledge in AF problems, we
propose a class of proportionate update based NKP normalized
least-mean-square (NKP-NLMS) type algorithms: namely, the
improved proportionate NKP-NLMS (NKP-IPNLMS) algorithm
which uses the ℓ1-norm of the smaller weight vectors and the NKP-
IPNLMS-ℓ0 which uses an approximation of the ℓ0-norm. Further,
we propose a new approximation of the ℓ0-norm with reduced
computational complexity, using which we also propose the
NKP-IPNLMS-ℓ0-2 algorithm. Next, we present a comparison of
computational complexity of the proposed algorithms. Simulation
results show the improved performance achieved by the proposed
algorithms, showing the advantage of exploiting sparsity in the
smaller weight vectors in NKPD based adaptive algorithms.

Index Terms—Sparsity, nearest Kronecker product, Adaptive
filter, Proportionate algorithms, System identification.

I. INTRODUCTION

Today adaptive signal processing (ASP) has found ap-
plications in numerous scientific avenues. Several adaptive
algorithms have been proposed for ASP, among which the
most widely used due to their low computational complexity
and simple implementation, are the least-mean-square (LMS)
& normalized LMS (NLMS) algorithm and their variants [1]–
[3]. One of the problems frequently studied in ASP is the
adaptive modelling of an unknown system. The LMS & NLMS
algorithm and their variants have been extensively studied for
this problem. In practical applications such as network and
acoustic echo cancellation, the underlying system can have long
impulse responses (IRs). Moreover, the underlying system may
be time variant, and hence the adaptive algorithm is expected
to model such changes as quickly as possible. Modelling such
long IRs using AFs pose challenges such as slow convergence
and slow tracking performance [4], [5].

It is well known that the convergence speed of an adap-
tive algorithm is inversely proportional to the number of
unknown coefficients it has to model, i.e., the length of the
adaptive weight vector [6]. Recently the technique of nearest
Kronecker product (NKP) decomposition was introduced into

the framework of adaptive filters [4], [5], [7], [8]. The NKP
decomposition (NKPD) breaks down the problem of modelling
a system with a long IR, into smaller problems of identifying
smaller weight vectors, thus reducing the number of adaptive
parameters, and therefore improving the convergence and
tracking speed [4], [8]. This property has inspired the study of
NKPD based iterative Wiener filter [4], [9], RLS filter [5], [9],
[10], Kalman filter [7], LMS and NLMS filters [8], including
applications such as, feedback cancellation in hearing aids [11],
modelling nonlinear systems [12], [13], active noise control
[13], microphone beamforming [14].

In this paper, first we take a deeper look into the optimal
smaller weight vectors following the NKPD of an IR (for
example, IR of the unknown system to be modelled) and show
that the smaller optimal weight vectors contain moderate to
high degree of sparsity, especially one of the two smaller
optimal weight vectors. It is known that exploiting the a
priori knowledge of sparsity of the underlying system improves
the convergence characteristics of traditional adaptive filters
[15]–[17]. Secondly, to take advantage of the sparsity in
the smaller optimal weight vectors following the NKPD and
therefore improve the convergence and tracking performance,
we incorporate the proportionate filtering framework into the
NKPD based adaptive filters and propose the NKPD based
IPNLMS (NKP-IPNLMS) algorithm, where the proportionate
weighting is based on ℓ1-norm of the smaller weight vectors.
We also propose the NKP-IPNLMS-ℓ0 and NKP-IPNLMS-ℓ0-
2 algorithms, where the proportionate weighting are based
on approximations of the ℓ0-norms of the smaller weight
vectors. In the simulation studies, we first show that optimal
smaller weight vectors resulting from the NKPD of a large
set of measured acoustic IRs from several databases [18]–[21],
have underlying sparse characteristics, which motivates the
development of proportionate class of NKP-NLMS algorithms.
Then the proposed proportionate NKPD based algorithms are
evaluated for adaptive system identification (ASI).

II. BACKGROUND & PROPOSED ALGORITHMS

A. Nearest Kronecker Product (NKP) Decomposition

We consider a linear system model, y(n) = wTx(n)+v(n),
where n is the sample index, w ∈ RL×1 is a finite impulse
response (FIR) filter and is the IR of the unknown system
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to be modelled, x(n) ∈ RL×1 is a tap-delayed vector of
the input signal x(n), v(n) ∼ N (0, σ2

v) with variance σ2
v is

the background noise and [·]T is the transpose operator. To
adaptively model this system, we consider an adaptive FIR filter
ŵ(n) ∈ RL×1, whose output is given by ŷ(n) = ŵT(n)x(n).
The modelling error is given by e(n) = y(n) − ŷ(n). Lets
consider the FIR filter w = [aT

1 aT
2 . . . aT

L2
]T, where aj ∈

RL1×1, j ∈ {1, 2, . . . , L2} are sections of w, such that L =
L1 ×L2 & L1 ≥ L2. Now, the sections of w can be arranged
into an L1 × L2 matrix as W = [a1 a2 . . . aL2 ]. W may
be decomposed using singular value decomposition (SVD) as
W = Q1ΣQT

2 =
∑L2

d=1 σdq1,dq
T
2,d, where Σ is an L1 × L2

rectangular diagonal matrix containing singular values of W
in decreasing order σ1 ≥ . . . ≥ σL2

≥ 0 and Q1 (Q2) of size
L1×L1 (L2×L2) contain the corresponding left (right) singular
vectors of W , i.e., q1,d (q2,d), as its columns. Hence, the
closest rank D ≤ L2 approximation of W in least squares (LS)
sense can be obtained as W =

∑D
d=1 w1,dwT

2,d, where w1,d =√
σdq1,d and w2,d =

√
σdq2,d, for d = 1, 2, . . . , D [4], [5].

Hence, the corresponding closest rank D ≤ L2 approximation
of w = vec(W ) in the LS sense, equivalent to minimizing the
misalignment M = ||w −w||2/||w||2, can be obtained as

w = vec(W ) =

D∑
d=1

vec(w1,dwT
2,d) =

D∑
d=1

w2,d ⊗ w1,d (1)

where vec(·) is the vectorization operation [8], ||·||p denotes the
p-norm operator, ⊗ denotes the Kronecker product, D = L2

gives back the exact w. One may notice from (1) that the
decomposition is not unique [4], i.e.,

w =

D∑
d=1

w2,d ⊗ w1,d =

D∑
d=1

1

θd
w2,d ⊗ θdw1,d (2)

i.e., the solution pairs at rank-d, (w1,d,w2,d) and
(θdw1,d,

1
θd

w2,d), for a real-valued θd, are equivalent in
terms of minimizing M and for any such solution pair
(θdw1,d,

1
θd

w2,d), the obtained w is the same. Following the
NKPD in (1), the adaptive weight vector can be expressed as
a combination of smaller weight vectors as

ŵ(n) =

D∑
d=1

ŵ2,d(n)⊗ ŵ1,d(n) (3)

where D is the rank of approximation. Following (2) and the
discussion thereafter, we can state that at rank-d the optimal
solution for the pair (ŵ1,d(n), ŵ2,d(n)) is (θdw1,d,

1
θd

w2,d),
d = 1, . . . , D, θd ∈ R. Using NKP-NLMS, the smaller weight
vectors can be updated as [8]

ŵl(n+ 1) = ŵl(n) + [µe(n)/(xT
k(n)xk(n) + η)]xk(n) (4)

where µ is the step-size, η is the regularization parameter,

ŵl(n) = [ŵT
l,1(n) ŵT

l,2(n) . . . ŵT
l,D(n)]T, (5)

x̂l,d(n) = Ŵ
T
l,d(n)x(n), xl(n) = [x̂T

l,1(n) . . . x̂T
l,D(n)]T,

Ŵ2,d(n) = ŵ2,d(n)⊗ IL1
, Ŵ1,d(n) = IL2

⊗ ŵ1,d(n), with IM
being the identity matrix of size M ×M , ŷ(n) = ŵT

l (n)xk(n),
l, k ∈ {1, 2}, l ̸= k, .

B. Proposed Proportionate NKPD based Algorithms

As we will see in Section III, the optimal solution pair for
rank-d approximation contains good degree of sparsity. To
solve for ŵ1(n) & ŵ2(n) and also exploit the sparsity arising
from NKPD, we propose the following optimization problem

min
ŵl(n+1)

1

2
||ŵl(n+ 1)− ŵl(n)||2Z−1

l (n)

subject to y(n) = ŵT
l (n)xk(n)

(6)

where l, k ∈ {1, 2}, l ̸= k, Zl(n) is the diagonal gain matrix
that adjusts the step-sizes of the individual coefficients of ŵl(n),
given by Zl(n) = diag{zl,1, zl,2, . . . , zl,DLl

}, such that

zl,j =
1− α

2DLl
+(1+α)

|ŵlj (n)|
2||ŵl(n)||1 + ζ

, j ∈ {1, 2, . . . , DLl}
(7)

where ŵl(n) ∈ RDLl×1 as in (5), ŵlj (n) is the jth element of
ŵl(n) and l ∈ {1, 2}, α ∈ [−1, 1], ζ is a small positive number
to avoid division by zero. Using the Lagrangian multiplier
approach, the cost function for the optimization problem in (6)
can be written as

Jl(n+ 1) =
1

2
||ŵl(n+ 1)− ŵl(n)||2Z−1

l (n)

+ λl[y(n)− ŵT
l (n)xk(n)]

(8)

l, k ∈ {1, 2}, l ̸= k, where λl is the Lagrange multiplier. Now,
following the stochastic gradient descent approach [17], the
update rules for ŵ1(n) and ŵ2(n) is derived as

ŵl(n+ 1) = ŵl(n) +
µe(n)

xT
k(n)Zl(n)xk(n) + η

Zl(n)xk(n) (9)

l, k ∈ {1, 2}, l ̸= k. We call (9) and (7) the NKPD based
improved proportionate NLMS (NKP-IPNLMS) algorithm,
which uses ℓ1-norm of the weight vectors ŵ1(n) & ŵ2(n),
as in (7), to induce sparsity into the corresponding adaptive
weight vector solutions. For α = −1, NKP-IPNLMS becomes
equivalent to the NKP-NLMS algorithm and for α close to 1,
NKP-IPNLMS behaves like NKPD based proportionate NLMS
(NKP-PNLMS) algorithm, with a proportionate weighting
similar to [22]. The ideal candidate to induce sparsity is
known to be the ℓ0-norm of the weight vectors, i.e., ||ŵ1(n)||0
& ||ŵ2(n)||0. However, since solving the ℓ0-norm is non-
polynomial (NP)-hard, an approximation of the ℓ0-norm is
generally used [16]. The NKP-IPNLMS algorithm uses ℓ1-
norm which is a poor approximation of the ℓ0-norm [23]. A
better & more natural approximation of ℓ0-norm is given by
[16], ||ŵl(n)||0 ≈

∑DLl

j=1 [1 − exp {−β|ŵlj (n)|}], l ∈ {1, 2},
which can be incorporated into the proposed NKPD based
proportionate framework as

zl,j =
1− α

2DLl
+ (1 + α)

1− exp {−β|ŵlj (n)|}
2
∑DLl

j=1 [1− exp {−β|ŵlj (n)|}] + ζ
(10)

for j = 1, . . . , DL1 & j = 1, . . . , DLl, l ∈ {1, 2}, respectively
& β > 0. We call (9) and (10) the NKP-IPNLMS-ℓ0 algorithm.
As we can see from (10) and later in subsection II-C, the
NKP-IPNLMS-ℓ0 algorithm requires DL1 +DL2 exponential
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TABLE I
COMPUTATIONAL COMPLEXITY COMPARISON

Algorithm × + ÷ exp {·}
NLMS [1] 3L+ 1 3L 1 -

IPNLMS [17] 4L+ 2 5L L+ 1 -
IPNLMS-ℓ0 [23] 5L+ 2 6L L+ 1 L

NKP-NLMS [8] 2DL+ 2DL1 2DL+DL1 2 -
+3DL2 + 2 +2DL2

NKP-IPNLMS 2DL+ 3DL1 2DL+ 3DL1 DL1 +DL2 -
+4DL2 + 4 +4DL2 +2

NKP-IPNLMS-ℓ0
2DL+ 4DL1 2DL+ 4DL1 DL1 +DL2 DL1

+5DL2 + 4 +5DL2 +2 +DL2

NKP-IPNLMS-ℓ0-2 2DL+ 4DL1 2DL+ 4DL1 DL1 +DL2 -
+5DL2 + 4 +5DL2 +2

(exp {·}) operations. Computing exp {·} is known to require
high computational complexity and it was shown in [24] that for
implementation in the double logarithmic arithmetic method
[25], implementing one exp {·} requires one log(·), one +
and two antilog(·) operations. In the proposed NKP-IPNLMS-
ℓ0 algorithm, exp {·} operations are required to approximate
the ℓ0 norm, which are essentially decaying exponentials. A
similar behaviour can be achieved using a 2{·} function in
place of the exp {·} function [26]. Moreover, the 2{·} function
requires only one antilog(·) operation in architecture [24] and
hence requires less computational complexity compared to the
exp {·} function. Hence, we propose a new reduced complexity
approximation of the ℓ0-norm as

||ŵl(n)||0 ≈
DLl∑
j=1

[
1− 2{−β|ŵlj

(n)|}
]

(11)

l ∈ {1, 2}, where ≈ becomes = for β → ∞. Using (11), we
propose NKP-IPNLMS-ℓ0-2 algorithm, as (9), with

zl,j =
1− α

2DLl
+ (1 + α)

1− 2{−β|ŵlj
(n)|}

2
∑DLl

j=1 [1− 2{−β|ŵlj
(n)|}] + ζ

(12)

l ∈ {1, 2}.

C. Computational Complexity

Table I shows the comparison of computational complexity
of the proposed algorithms with standard NLMS [1], IPNLMS
[17] and IPNLMS-ℓ0 [23], in terms of number of multiplica-
tions (×), additions (+), divisions (÷) and exp {·} operations
required per sample. From Table I, we can see that NKP-
IPNLMS requires slightly higher computations compared to
NKP-NLMS. NKP-IPNLMS-ℓ0 requires calculation of extra
exp {·} operations compared to NKP-IPNLMS, increasing its
complexity. However, the complexity due to exp {·} operation
is eliminated in NKP-IPNLMS-ℓ0-2. In general, proportionate
NKP-NLMS algorithms have a higher complexity compared
to the standard NKP-NLMS algorithm, but the motivation &
advantages of using the proportionate method in NKP-NLMS
framework will be apparent from studies in Section III.

III. SIMULATION STUDY

A. Investigation of Sparsity in Smaller Optimal Weight Vectors

To measure the sparseness of a vector b ∈ RM×1, we
consider the following sparseness measure based on the ℓ1 and

ℓ2 norms of b [5], [27], given by

ξ12 =
M

M −
√
M

(
1− ||b||1√

M ||b||2

)
(13)

For a certain rank of approximation D of an IR w, as in
(1), the optimal weight vectors for ŵ1(n) & ŵ2(n) can be
obtained from the SVD of the matrix W constructed from w, as
w1 = [θ1wT

1,1 . . . θDwT
1,D]T & w2 = [ 1

θ1
wT

2,1 . . . 1
θD

wT
2,D]T,

& wi,d =
√
σdqi,d, i ∈ {1, 2}, θd ∈ R, d = 1, 2, · · · , D. L1

and L2 are chosen such that L1L2 = L, L1 ≥ L2 and L1+L2

is minimum, so that NKPD based algorithms require minimum
number of modelling parameters (weight coefficients) [4], [8].

We study the sparsity degree ξ12 of w1 & w2 for a wide
range of acoustic IRs: (i) 154 measured IRs for active noise
control [18]; (ii) 1008 measured room IRs (SMARD database)
[19]; (iii) 10704 measured head related IRs (HRIRs) [20];
(iv) 34560 room IRs (RIRs) [21]. Fig. 1 (i)-(iv) respectively,
show the sparsity degree ξ12 of w1 & w2, resulting from each
acoustic IRs in the corresponding databases for D = 5 &
θd = 1, and Fig. 1 (v)-(viii) respectively, for D = 7 & θd = 1.
From Fig. 1, we can see that for different acoustic IRs, w2

has moderate to a high degree of sparsity. On the other hand,
for different acoustic IRs, w1 has moderate degree of sparsity.
Similar observations can be made from ξ12 for other random
values of θd and other approximation ranks 1 ≤ D ≤ L2, but
are not presented here due to page constraints. This observation
motivates the use of sparsity aware techniques in NKPD based
adaptive algorithms.

B. Comparison of Convergence Performance

We consider an ASI problem with an AR(1) process as input
signal, obtained by filtering a white Gaussian noise ∼ N (0, 1)
via first order system 1/(1 − 0.9z−1) and a signal to noise
ratio (σ2

y/σ
2
v) of 20 dB at the output of the system [4], [8].

The IR of the unknown system is considered to be one of the
IRs of length L = 500 shown in Fig. 2 (a) & (b), which are
echo paths from the G168 Recommendation [4], [28]. Here we
choose L1 = 25 and L2 = 20, such that L1L2 = L, L1 ≥ L2

and L1 + L2 is minimum [4], [8]. The decaying nature of the
singular values of the matrix W for the IRs in Fig. 2 (a) &
(b) have been studied in detail in [4], and hence has not been
presented here. It was shown in [4] that the IRs in Fig. 2(a)
& (b) represent low rank systems and low rank approximation
with D = 3 & D = 5, respectively, can give the exact IRs.
Fig. 2 (a.1) & (a.2) shows w1 & w2, for the IR in Fig. 2 (a)
with D = 3, θd = 1 and Fig. 2 (b.1) & (b.2) shows w1 & w2,
for the IR in Fig. 2 (b) with D = 5, θd = 1. The normalized
misalignment (in dB) is considered as the performance measure,
given by M (ŵ1, ŵ2) = 20 log10[(||w−ŵ(n)||2)/||w||2], with
ŵ(n) calculated as in (3) and the results shown are averaged
over 20 independent trials.

CASE I: Fig. 3 shows the normalized misalignment variation
for the competing algorithms for the IR in Fig. 2(a). From Fig.
3, we can see that the proportionate based NKP algorithms,
i.e., NKP-IPNLMS, NKP-IPNLMS-ℓ0 and NKP-IPNLMS-ℓ0-
2 reach lower steady state misalignment compared to the
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Fig. 1. Sparseness Degree of w1 & w2 for IRs from: (i) & (v) [18], with L1 = 25, L2 = 20, (ii) & (vi) [19], with L1 = 60, L2 = 50; (iii) & (vii) [20],
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0 500Samples

0

0.1

0.2

A
m

p
lit

u
d

e

IR

0 50
-0.4

-0.2

0

Samples
0 50

Samples

-0.4
-0.2

0

0 500
Samples

-0.1
0

0.1
0.2

A
m

p
lit

u
d

e

0 50 100
Samples

-0.5

0

0.5

0 50 100
Samples

-0.4
-0.2

0
0.2

(a.1) (a.2)

(b) (b.1)

(b.2)

(a)

Fig. 2. (a),(b): Impulse Responses (IRs); (a.1): w1 for (a) with ξ12 = 0.5398;
(a.2): w2 for (a) with ξ12 = 0.9253, D = 3; (b.1): w1 for (b) with ξ12 =
0.4970; (b.2): w2 for (b) with ξ12 = 0.8243, D = 5. θd = 1.

0 0.5 1 1.5 2 2.5 3

Samples 10
5

-30

-20

-10

0

2.725 2.73

105

-33.5
-33

-32.5
-32

-31.5

IR 2(a)

Fig. 3. CASE I: Misalignment (dB) for IR in Fig. 2(a), µ = 0.01, β = 100;
D = 3 for NKPD based algorithms.

NKP-NLMS algorithm. For NKP-IPNLMS, α = −0.5 gives a
lower steady state misalignment compared to α = 0, whereas
for NKP-IPNLMS-ℓ0 & NKP-IPNLMS-ℓ0-2, α = 0 reaches
lower steady state misalignment compared to α = −0.5. Also,
NKP-IPNLMS-ℓ0 and NKP-IPNLMS-ℓ0-2 algorithms have
similar convergence, however NKP-IPNLMS-ℓ0-2 has lower
complexity compared to NKP-IPNLMS-ℓ0 (Table I), and both
reach a lower steady state misalignment compared to NKP-
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Fig. 4. CASE II: Misalignment (dB) with hybrid algorithms for IR in Fig.
2(a), µ = 0.01, β = 100; D = 3 for NKPD based algorithms.

IPNLMS algorithm. Also, NKPD based algorithms provide a
faster convergence compared to standard NLMS and IPNLMS.

CASE II: As observed previously, w1 generally contains
less sparsity than w2. Hence, we also study the case where
ŵ1 is updated using NKP-NLMS and ŵ2 is updated by NKP-
IPNLMS, NKP-IPNLMS-ℓ0 or NKP-IPNLMS-ℓ0-2, which we
call the hybrid NKP-IPNLMS (H-NKP-NLMS), hybrid NKP-
IPNLMS-ℓ0 (H-NKP-IPNLMS-ℓ0) and hybrid NKP-IPNLMS-
ℓ0-2 (H-NKP-IPNLMS-ℓ0-2), respectively. Fig. 4 shows the
variation of normalized misalignment for this case. From Fig.
4, similar observations can be made as in Case I. Moreover, the
convergence characteristics and steady state misalignment of
the NKP-IPNLMS, NKP-IPNLMS-ℓ0 & NKP-IPNLMS-ℓ0-2 in
Fig. 3 are similar to the H-NKP-IPNLMS, H-NKP-IPNLMS-ℓ0
& H-NKP-IPNLMS-ℓ0-2 in Fig. 4, respectively, and all of
them provide better convergence characteristics compared to
NKP-NLMS. Hence, using a proportionate update appears to
be more beneficial for ŵ2(n) and has minimal effect for ŵ1(n),
which can be related to the previous observation that w2 has
high sparsity & w1 has moderate sparsity.

CASE III: We also consider a path change ASI problem to
study the tracking performance of the algorithms, where the
IR of the unknown system changes midway in the simulation,
from the IR in Fig. 2(a) in the first half of the simulation
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Fig. 5. CASE III: Misalignment (dB) with path change from Fig. 2(a) to (b).
µ = 0.01, β = 10; D = 5 for NKPD based algorithms.

to Fig. 2(b) in the later half. Fig. 5 shows the convergence
characteristics for this case. From Fig. 5, we can observe
that NKP-IPNLMS, NKP-IPNLMS-ℓ0 & NKP-IPNLMS-ℓ0-2
provide faster tracking performance when there is a sudden
change in the modelled system, compared to the NLMS &
NKP-NLMS algorithms. Similar to Case I and II, we observe
that NKP-IPNLMS-ℓ0-2 provides similar performance as that
of NKP-IPNLMS-ℓ0 but at a lower computational complexity.
Also, depending on the value of α, there is slight variation
in performance of the NKP-IPNLMS, NKP-IPNLMS-ℓ0 &
NKP-IPNLMS-ℓ0-2 algorithms.

IV. CONCLUSION & FUTURE DIRECTIONS

In this paper, we analyse the smaller optimal weight vectors
resulting from NKPD of numerous acoustic IRs and show
that the smaller weight vectors exhibit moderate to highly
sparse characteristics, where one of them is generally seen to
have a high sparsity while the other having moderate sparsity.
To take advantage of this observation, we propose a set of
proportionate update NKPD based NLMS class of algorithms,
which can take advantage of the sparse nature of the smaller
weight vectors and improve the convergence and tracking
characteristics. This would potentially benefit other Kronecker
product decomposition based algorithms, including the ones
involving bilinear and trilinear forms. The observation also
opens the potential for using zero attraction penalty to exploit
the sparsity in the decomposed smaller weight vectors. Since,
performance of the proposed algorithms depend on parameter
α ∈ [−1, 1], making it adaptive in the framework of NKPD
based proportionate algorithms can also be studied.
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