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Abstract—Adaptive active control is a crucial technology to attenuate
impulsive noises. But how to design an appropriate adaptive filter to
attain a flexible compromise between noise reduction and computational
complexity is a challenging problem. This paper proposes a robust
adaptive filtering algorithm to deal with this issue. The coefficient vector
of the adaptive filter is decomposed into two sets of short sub-filters
through the Kronecker product, which reduces the size of matrices
and vectors in the active noise control algorithm. A robust estimator,
which is insensitive to impulsive noises, is used to define a group of cost
function under the recursive least-squares criterion, based on which we
derive the adaptive control algorithm that is composed of two groups
of alternately updating equations. The effectiveness of the proposed
approach is verified by numerical simulations.
Index Terms—Adaptive active control, impulsive noise, Kronecker

product decomposition, computational complexity.

I. INTRODUCTION

Active noise control (ANC) is a fundamental approach to atten-

uating unwanted low-frequency disturbances by introducing con-

trollable secondary sound sources, which are employed to interfere

destructively with the primary sound source [1], [2]. This technology

has been extensively applied in various applications to reduce detri-

mental noises, such as broadband noise in flight decks, narrowband

transformer noise, noise in ducts, and uncomfortable noises in living

and work environments. The filtered-x least-mean square (FxLMS)

algorithm is the most commonly used adaptive algorithm in ANC

due to its effectiveness in most cases, low computational complexity,

and ease of implementation [1], [2].

Impulsive noises exist in a wide spectrum of environments, such

as the clatter of workpieces in workshops, the noise produced by pile

drivers, the gunfire on the battlefield, the sound of firecrackers, door

slams, objects dropping, to name but a few. This class of noises are

more likely to exhibit sharp spikes or occasional bursts than one

would expect from normally distributed noise that its probability

density function obeys Gaussian distribution. A large number of

adaptive algorithms have been developed for the active control of

impulsive noises, such as the improved variants of the FxLMS algo-

rithm [3], [4], the filtered-x least-mean p-norm algorithm (FxLMP)

[5], [6], the FxlogLMS algorithm with logarithmic transformation

[7], the M-estimator based FxLMS algorithm [8], the recursive

least-squares (RLS) based FxlogRLS algorithm [9], the FxRLM

algorithm based on the Hampel function [10], the state detector-

based post-filtering algorithm [11], the filtered-x affine projection

sign algorithm with a post-adaptive filter and variable step size [12],

and the hybrid methods based on FxLMS- and FxRLS-types [13],
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Fig. 1. Block diagram of a single channel feed-forward ANC system that
takes a commutation error into account.

[14]. Among those techniques, the FxlogRLS algorithm has attracted

great attention since it uses the logarithmic function to attenuate

impulsive noise and consider a commutation error to circumvent

the instability of the adaptive filter. This algorithm, however, is of

high computational complexity.

In this work, we extend the FxlogRLS algorithm and propose a

filter-x recursive least M-estimate algorithm based on the nearest

Kronecker product [15]–[18] (FxRLM-NKP) to control impulse

noise. The coefficient vector of the adaptive controller is decom-

posed into two sets of short sub-filters through NKP, which are

used to formulate the signal model. A robust estimator with an

adaptive parameter is employed to define a group of cost function,

from which the corresponding adaptive control algorithm is derived.

The use of the NKP decomposition reduces the computational

complexity of the adaptive control algorithm. The adaptive M-

estimator makes the proposed FxRLM-NKP algorithm robust to im-

pulsive noises. Simulation results show that the proposed algorithm

performs well on impulsive noise control and is computationally

more efficient than its original counterpart.

II. THE RECURSIVE LEAST M-ESTIMATE ANC ALGORITHM

BASED ON THE NKP DECOMPOSITION

A. Signal Model and Optimization Criterion
A single channel feed-forward ANC system that takes a com-

mutation error into account [9], [19] is illustrated in Fig. 1. It is

composed of a reference microphone sensor for picking up the

reference noise x(n), an error microphone sensor for measuring
residual noise e(n), and a secondary sound source for generating the
canceling signal y(n) to attenuate the primary noise d(n). P (z) is
the primary path andW (z) is the control filter. The reference signal,
x(n), is filtered through Ŝ(z), which is an estimate of the so-called
secondary path S(z). The commutation error er(n) resulting from
the altered sequence between the algorithm derivation stage and the

ANC applications is considered in order to improve the algorithm’s

stability.
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It can be seen from Fig. 1 that the error signal, e(n), of the ANC
system at time n is

e(n) = d(n) + s(n) ∗
[
wwwT (n− 1)xxx(n)

]
, (1)

where s(n) is the impulse response of the secondary path, S(z), at
time n, ∗ denotes the linear convolution, the superscript T stands

for the transpose operator,

www(n) = [w0(n) w1(n) · · · wL−1(n)]
T

(2)

is the coefficient vector of the adaptive filter W (z) of length L at

time n, and

xxx(n) = [x(n) x(n− 1) · · · x(n− L+ 1)]T (3)

is the signal vector at time n. In practical ANC applications, S(z)
is unknown and must be estimated. Thus, the filtered reference is

generated by passing the reference signal through the estimate of

the secondary path. Then, the error signal in (1) can be rewritten as

e(n) = d(n) +wwwT (n− 1) [ŝ(n) ∗ xxx(n)]

= d(n) +wwwT (n− 1)xxxf(n), (4)

where

xxxf(n) = ŝ(n) ∗ xxx(n)

= [xf(n) xf(n− 1) · · · xf(n− L+ 1)]T , (5)

xf(n) = ŝ(n) ∗ x(n), (6)

and ŝ(n) is the time-domain counterpart of Ŝ(z).

In most ANC systems, control filters are usually sparse regardless

of whether the reference is white Gaussian noise or impulsive

noise, and so the control filters can be approximated by a low-

rank model with NKP. If the reference noise is impulsive, this

low-rank approximation should take a smaller order of NKP to

achieve effective control performance. A benefit of using a small

order of NKP is that the algorithm can be made computationally

more effective. Enlightened by the NKP decomposition approach in

[15]–[18], we use a low-rank model that involves the NKP between

a group of short vectors to approximate the coefficient vector of

the filter. Hence, the adaptive filter is decomposed through the

Kronecker product as [18]

www(n) =
P∑

p=1

www2,p(n)⊗www1,p(n), (7)

where www1,p(n) and www2,p(n) are sub-filters of length L1 and L2,

respectively, ⊗ stands for the Kronecker product, P is the order of

NKP, and we assume that L = L1L2 and P < min {L1, L2}. By
using the following relationship [20]:

www2,p(n)⊗www1,p(n) = [www2,p(n)⊗ IIIL1 ] www1,p(n)

= [IIIL2 ⊗www1,p(n)] www2,p(n), (8)

where IIIL1 and IIIL2 are the identity matrices of size L1 × L1 and

L2 × L2, respectively, the error signal in (4) can be expressed into

two equivalent forms:

e1(n) = d(n) +
P∑

p=1

wwwT
1,p(n− 1)[www2,p(n− 1)⊗ IIIL1 ]

Txxxf(n)

= d(n) +
P∑

p=1

wwwT
1,p(n− 1)xxxf2,p (n)

= d(n) +wwwT
1 (n− 1)xxxf2(n), (9)

e2(n) = d(n) +
P∑

p=1

wwwT
2,p(n− 1)[IIIL2 ⊗www1,p(n− 1)]Txxxf(n)

= d(n) +
P∑

p=1

wwwT
2,p(n− 1)xxxf1,p (n)

= d(n) +wwwT
2 (n− 1)xxxf1(n), (10)

where

xxxf2,p(n) = [www2,p(n− 1)⊗ IIIL1 ]
Txxxf(n), (11)

xxxf2(n) = [xxxTf2,1(n) xxxTf2,2(n) · · · xxxT
f2,P (n)]T , (12)

www1(n− 1) = [wwwT
1,1(n− 1) wwwT

1,2(n− 1) · · · wwwT
1,P (n− 1)]T ,

(13)

xxxf1,p(n) = [IIIL2 ⊗www1,p(n− 1)]Txxxf(n), (14)

xxxf1(n) = [xxxTf1,1(n) xxxTf1,2(n) · · · xxxT
f1,P

(n)]T , (15)

www2(n− 1) = [wwwT
2,1(n− 1) wwwT

2,2(n− 1) · · · wwwT
2,P (n− 1)]T .

(16)

To smooth out the momentary fluctuations due to large bursts

in impulsive noise and mitigate the adverse effect of the impul-

sive characteristics on the adaptive filter, a robust M-estimator is

employed to define a set of cost functions as follows:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Jρ [www1(n)] =

n∑
i=1

λ
n−i
1 ρ[ε1(i)], (17a)

Jρ [www2(n)] =
n∑

i=1

λ
n−i
2 ρ[ε2(i)], (17b)

where

ε1(i) = d(i) +wwwT
1 (n)xxxf2(i), (18)

ε2(i) = d(i) +wwwT
2 (n)xxxf1(i), (19)

are the a posteriori errors at time index i, 0 < λ1, λ2 < 1 are two
forgetting factors, which are set to different values since possibly

unequal error signals ε1(i) and ε2(i) cause the optimal forgetting
factors in (17a) and (17b) to be different, and ρ(·) is a Cauchy
estimator, which is defined as [21]

ρC [εl(i)] =
ξ2l
2
log

[
1 +

(
εl(i)

ξl

)2
]
, l = 1, 2, (20)

the parameter ξl is adaptively estimated by using the variance

estimate of εl(n) and median operation [22].
Note that the algorithm presented in this work is largely different

from the logarithmic transformation method developed in [9]. The

cost function of the algorithm in this work is established by using

a Cauchy estimator, whose parameter ξl is adaptively estimated

to better track impulsive noises. More importantly, the proposed

algorithm uses the NKP to decompose the coefficient vector of the

adaptive filter into two sets of shorter sub-filters, which can largely

reduce the computational complexity of the adaptive algorithm.

B. Adaptive Algorithm
According to (17a), the derivative of Jρ[www1(n)] with respect to

www1(n) is deduced as

∂Jρ[www1(n)]

∂www1(n)
=

n∑
i=1

λ
n−i
1

ρ′[ε1(i)]

ε1(i)
xxxf2(i)[d(i) +wwwT

1 (n)xxxf2(i)],

(21)

where ρ′(···) is the first-order derivative of ρ(···). Letting

γ1(i) =
ρ′[ε1(i)]

ε1(i)
(22)
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and the derivative of (21) be equal to zero, we obtain one normal

equation as follows:

RRR2(n)www1(n) = ppp2(n), (23)

where

RRR2(n) =

n∑
i=1

λ
n−i
1 γ1(i)xxxf2(i)xxx

T
f2(i)

= λ1RRR2(n− 1) + γ1(n)xxxf2(n)xxx
T
f2(n), (24)

ppp2(n) = −
n∑

i=1

λ
n−i
1 γ1(i)d(i)xxxf2(i)

= λ1ppp2(n− 1) − γ1(n)d(n)xxxf2(n). (25)

In a similar fashion, one can obtain from (17b) another normal

equation as follows:

RRR1(n)www2(n) = ppp1(n), (26)

where

RRR1(n) =
n∑

i=1

λ
n−i
2 γ2(i)xxxf1(i)xxx

T
f1(i)

= λ2RRR1(n− 1) + γ2(n)xxxf1(n)xxx
T
f1(n), (27)

γ2(i) =
ρ′[ε2(i)]

ε2(i)
, (28)

ppp1(n) = −

n∑
i=1

λ
n−i
2 γ2(i)d(i)xxxf1(i)

= λ2ppp1(n− 1) − γ2(n)d(n)xxxf1(n). (29)

It is easy to check, according to (20), that γ1(i) and γ2(i) can be
expressed as

γl(i) =
1

1 +
(

εl(i)
ξl

)2
, l = 1, 2. (30)

Based on (23)–(25), (26), (27), and (29), we derive the FxRLM-

NKP algorithm, which is summarized in Table I. Notice that in

the algorithm implementation, we employ the a priori errors with
www1(n− 1) and www2(n− 1) instead of www1(n) and www2(n) to compute
γ1(n) and γ2(n), respectively.

As pointed out in [9], the signal flow path of the ANC system

is different from the typical derivation stage. This difference brings

out the commutation error in the error signal [9], [19]. In the active

control of impulsive noises, such a commutation error cannot be

ignored due to its fast abrupt change. So, the commutation error

has to be incorporated into the update equation of the proposed

algorithm to deal with its adverse effect. To do this, we express,

according to the error formulation in (1), (9), and (10), the estimates

of the primary noise d(n) and the secondary path into the following
two equivalent forms:

d̂(n) = e1(n)− ŝ(n)∗
P∑

p=1

wwwT
1,p(n− 1)[www2,p(n− 1) ⊗ IIIL1 ]

Txxx(n)

= e1(n)− ŝ(n)∗
P∑

p=1

wwwT
1,p(n− 1)xxx2,p(n)

= e1(n)− ŝ(n)∗
[
wwwT

1 (n− 1)xxx2(n)
]

(31)

TABLE I
THE FXRLM-NKP ALGORITHM.

Initialization

www2,p(0) = [η 0 · · · 0]T , p = 1, 2, . . . , P (0 < η ≤ 1)
www1,p(0) = [η 0 · · · 0]T , p = 1, 2, . . . , P (0 < η ≤ 1)
QQQ2 = δ2IIIPL1×PL1

, QQQ1 = δ1IIIPL2×PL2
, δ1 > 0, δ2 > 0

For n = 1, 2, . . ., compute
xxxf(n) = ŝ(n) ∗ xxx(n)
xxxf2,p (n) = [www2,p(n− 1)⊗ IIIL1

]Txxxf(n)

xxxf2 (n) =
[
xxxTf2,1 (n) xxxTf2,2 (n) · · · xxxTf2,P

(n)
]T

xxx2,p(n) =
[
www2,p(n− 1)⊗ IIIL1

]T
xxx(n)

xxx2(n) =
[
xxxT2,1(n) xxxT2,2(n) · · · xxxT2,P (n)

]T

e1(n) = d(n) +wwwT
1 (n− 1)xxxf2 (n)

γ1(n) =
1

1+
(

e1(n)
ξ1

)2

kkk2(n) =
λ
−1
1 QQQ2(n−1)xxxf2

(n)

1
γ1(n)

+λ
−1
1 xxxT

f2
(n)QQQ2(n−1)xxxf2

(n)

QQQ2(n) = λ−1
1 QQQ2(n− 1)− λ−1

1 kkk2(n)xxxTf2 (n)Q
QQ2(n− 1)

er1(n) = e1(n)− ŝ(n)∗
[
wwwT

1 (n−1)xxx2(n)
]
+wwwT

1 (n−1)xxxf2 (n)
www1(n) = www1(n− 1) − kkk2(n)er1 (n)

=
[
wwwT

1,1(n) wwwT
1,2(n) · · · wwwT

1,P (n)
]T

xxxf1,p (n) =
[
IIIL2

⊗www1,p(n− 1)
]T

xxxf(n)

xxxf1 (n) =
[
xxxTf1,1 (n) xxxTf1,2 (n) · · · xxxTf1,P

(n)
]T

xxx1,p(n) = [IIIL2
⊗www1,p(n− 1)]Txxx(n)

xxx1(n) =
[
xxxT1,1(n) xxxT1,2(n) · · · xxxT1,P (n)

]T

e2(n) = d(n) +wwwT
2 (n− 1)xxxf1 (n)

γ2(n) =
1

1+
(

e2(n)
ξ2

)2

kkk1(n) =
λ
−1
2 QQQ1(n−1)xxxf1

(n)

1
γ2(n)

+λ
−1
2 xxxT

f1
(n)QQQ1(n−1)xxxf1

(n)

QQQ1(n) = λ−1
2 QQQ1(n− 1)− λ−1

2 kkk1(n)xxxTfff1
(n)QQQ1(n− 1)

er2(n) = e2(n)− ŝ(n)∗
[
wwwT

2 (n−1)xxx1(n)
]
+wwwT

2 (n−1)xxxf1 (n)
www2(n) = www2(n− 1) − kkk1(n)er2 (n)

=
[
wwwT

2,1(n) wwwT
2,2(n) · · · wwwT

2,P (n)
]T

www(n) =
P∑

p=1
www2,p(n)⊗www1,p(n)

e(n) = d(n) +wwwT (n)xxxf (n)

and

d̂(n) = e2(n)− ŝ(n)∗

P∑
p=1

wwwT
2,p(n− 1)[IIIL2 ⊗www1,p(n− 1)]Txxx(n)

= e2(n)− ŝ(n)∗

P∑
p=1

wwwT
2,p(n− 1)xxx1,p(n)

= e2(n)− ŝ(n)∗
[
wwwT

2 (n− 1)xxx1(n)
]
, (32)

where

xxx2,p(n) = [www2,p(n− 1)⊗ IIIL1 ]
Txxx(n), (33)

xxx2(n) = [xxxT
2,1(n) xxxT

2,2(n) · · · xxxT2,P (n)]
T
, (34)

xxx1,p(n) = [IIIL2 ⊗www1,p(n− 1)]Txxx(n), (35)

xxx1(n) = [xxxT
1,1(n) xxxT

1,2(n) · · · xxxT1,P (n)]
T
. (36)

Substituting the estimates in (31) and (32) into (9) and (10),

respectively, and rewriting the original e1(n) and e2(n) as er1(n)
and er2(n), respectively, give the error signals:

er1(n) = e1(n)− ŝ(n) ∗ [wwwT
1 (n− 1)xxx2(n)] +wwwT

1 (n− 1)xxxf2(n),
(37)

er2(n) = e2(n)− ŝ(n) ∗ [wwwT
2 (n− 1)xxx1(n)] +wwwT

2 (n− 1)xxxf1(n).
(38)
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Fig. 2. Computational complexity of the FxlogRLS, FxRLM, and FxRLM-
NKP algorithms versus the parameter P , where the length of the adaptive
filter is set to L = 1024.
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Fig. 3. Computational complexity of the FxlogRLS, FxRLM, and FxRLM-
NKP algorithms versus the length L of the adaptive filter, where the
parameter P is set to 10 and 15, respectively.

III. SIMULATIONS

In this section, numerical simulations are conducted to validate

the effectiveness of the proposed FxRLM-NKP algorithm, and

compare it with the FxLMS, FxlogRLS, FxRLM algorithms. The

primary path P (z) and secondary path S(z) are modeled as FIR
filters of length 1600 and 500, respectively, and we assume that the

secondary path S(z) with the minimum phase is known a priori,
i.e., Ŝ(z) = S(z). The length of the global adaptive control filter
www(n) is set to L = 1024, the length of the sub-filters www1(n) and
www2(n) is set to L1 = L2 = 32. Two reference noise signals are
modeled by the symmetric α-stable (SαS) distribution [23]. One is

the highly impulsive with α = 1.5, and the other is less impulsive
with α = 1.8.

The computational complexity is evaluated in terms of the number

of multiplications/divisions required for the implementation of an

ANC algorithm. The number of additions/subtractions are neglected

because they are much quicker to calculate in most generic hardware

platforms. Figure 2 illustrates the computational complexity of

the FxlogRLS, FxRLM, and FxRLM-NKP algorithms versus the

parameter P , where the length of the adaptive filter is set to

L = 1024. As seen, as the value of P increases, the computational

complexity of the proposed FxRLM-NKP algorithm increases. If

P ≤ 22, its computational cost is less than that of the other
two algorithms. Figure 3 plots the computational complexity of the

FxlogRLS, FxRLM, and FxRLM-NKP algorithms versus the length

L of the adaptive filter, where the parameter P is set to 10 and 15,

respectively. It can be seen that as the length L of the adaptive filter

increases, the computational complexities of the studied algorithms

increase. In comparison, the computational cost of the proposed

FxRLM-NKP algorithm is much less than those of the other two

algorithms, especially for large L. This indicates that in terms of
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Fig. 4. Simulation results for the case of α = 1.5 with P = 15: (a) original
primary noise, (b) residual noise of the FxLMS algorithm; (c) residual noise
of the FxlogRLS algorithm, (d) residual noise of the FxRLM algorithm, and
(e) residual noise of the FxRLM-NKP algorithm.
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Fig. 5. Simulation results for the case of α = 1.8 with P = 10: (a) original
primary noise, (b) residual noise of the FxLMS algorithm; (c) residual noise
of the FxlogRLS algorithm, (d) residual noise of the FxRLM algorithm, and
(e) residual noise of the FxRLM-NKP algorithm.

the computational efficiency, the proposed algorithm is the most

effective among the three compared algorithms.

Figures 4 and 5 present the noise reduction performance of the

studied algorithms. As seen, for the two types of impulsive noises,

the FxLMS algorithm performs worst due to its lack of robustness.

The FxlogRLS algorithm obtains good control performance as it

uses a logarithmic function to prevent from large fluctuation in

the filter coefficients. The FxRLM algorithm achieves comparable

noise reduction performance due to the immunity of the adaptive

Cauchy estimator over impulsive noises. The proposed FxRLM-

NKP algorithm attains a comparable control performance as FxRLM

but with a much lower computational cost. The FxRLM-NKP

algorithm has the lowest complexity among the three studied robust

control algorithms.

IV. CONCLUSIONS

In this paper, an FxRLM-NKP algorithm was developed for the

active control of impulsive noises. With NKP, the control filter is

decomposed into two sets of short sub-filters, which significantly

reduces the computational complexity of the algorithm. A Cauchy

estimator was employed to define the robust cost function, from

which the corresponding control algorithm was deduced. The pro-

posed algorithm exploits the property of the Cauchy estimator and

an adaptive parameter to achieve active control of impulse noises.

The complexity analysis showed that the proposed FxRLM-NKP

algorithm is computationally much more efficient than FxRLM

and FxlogRLS and the simulation results showed that they achieve

comparable performances.
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