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Abstract—Efficiently simulating sound density in room acoustic
models poses a significant challenge since it involves the so-
lution of large-scale systems of equations, which can result in
unreasonably/unacceptably long computation times. However, in
many cases, sound density measurements only need to be taken
at certain points in the room rather than every point, which
allows the use of Model Order Reduction (MOR) techniques.
System theoretic techniques like balanced truncation (BT) are
well-established and can be applied to the sound diffusion
equation, offering reliable error bounds. This paper presents a
low-rank BT algorithm in order to generate compact models,
which can be efficiently and accurately simulated over many
timesteps. The experimental results show that this method can
provide extreme order reduction percentages of 99.99% and thus
accelerate simulations by up to 59× while maintaining a relative
error of less than 0.75%.

Index Terms—Room Acoustic Models, Sound Diffusion Equa-
tion, Finite Difference Method, Balanced Truncation, Model
Order Reduction

I. INTRODUCTION

There has been significant interest in room acoustic model-
ing and prediction in recent years. Modeling sound density
in an enclosed space can be very complex, as it requires
taking into account various geometrical properties, absorption
features, and boundary conditions. To address this challenge,
a diffusion equation method has been developed that can
effectively model these parameters [1], [2]. In order to com-
pute the sound density, recent methodologies have focused
on solving the linear system of equations that result from
modeling approaches such as Finite Elements Method (FEM)
[3] and Finite Difference Methods (FDM) [4], [5].

All of the aforementioned systems of the room acoustic
modeling methods are enormous and require solving large-
scale systems of equations at multiple timesteps [6], [7].
However, in certain scenarios, it may only be necessary to
compute the sound density at specific points to assess the
performance of individual sound devices in the room. In such
cases, a Model Order Reduction (MOR) process can be used
to replace the large room acoustic model with a much smaller
model that behaves similarly at the points of interest [8].

MOR methods are categorized into two types. Moment-
Matching (MM) techniques are computationally efficient in
producing reduced-order models but they exhibit some draw-
backs, the most prominent of which is that they do not
offer any a-priori error bound [9]. This can lead to reduced
models that may not be accurate enough or of sufficient small
order. Contrary, system theoretic techniques, such as Balanced

Truncation (BT), are based on rigorous mathematical concepts
from system theory to provide an overall bound on the error
without having to compute the reduced-order model first [10].
However, they require the solution of the expensive Lyapunov
matrix equations and the storage of the corresponding dense
matrices, even if the system matrices are sparse.

This paper introduces an innovative and efficient ap-
proach for reducing large-scale acoustic models. Our proposed
method combines the power of the low-rank BT method
with the Extended Krylov Subspace (EKS) technique to solve
the Lyapunov matrix equations [11], leading to remarkable
computational efficiency. To validate the effectiveness of our
approach, we employed it on several room benchmarks with
varying sizes, discretization points and sound sources. Exper-
imental results demonstrate a significant reduction in simu-
lation time compared to the original models, with negligible
errors, which proves the suggested method to be a significant
step forward in the field of room acoustics modeling.

The rest of the paper is organized as follows. Section II
outlines the diffusion equation along with the appropriate
boundary conditions. Section III describes the discretization
process for the FDM-based room acoustics model. Section IV
describes the BT application with the EKS method for the
Lyapunov equations. Finally, Section V presents the results
and a discussion of the method’s advantages, followed by the
conclusions in Section VI.

II. THEORETICAL BACKGROUND

The diffusion equation is a type of parabolic partial differ-
ential equation (PDE) that can be utilized in various physical
problems, such as heat conduction in solids, population dis-
persion, and other similar physics problems. As a result, a
diffusion-type model has been established for sound modeling
and prediction, which was initially presented in [1] and later
examined for numerical simulations in [2]. Subsequently, in
[12], the authors extended the traditional geometrical room
acoustic model by drawing an analogy with the radiative
transfer theory for scattering and absorbing radiation. More
specifically, the PDE that describes the diffusion equation
model for sound energy is the following:

∂w(r, t)

∂t
= D∇2w(r, t) + cmw(r, t) + P (t)δ(r− rs) (1)

with term w(r, t) being the sound energy at the position r
defined on a domain V and time t, P (t) the sound source
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term, which is located at the position r, and mw(r, t) the
atmospheric attenuation within the room term, where m is
the absorption coefficient of air [13]. The above equation is
considered as an inhomogeneous parabolic PDE where ∇2 is
the Laplace operator term, and D = λc/3 is the diffusion
coefficient term, with c being a constant that describes the
speed of sound. Finally, Eq. 1 must be accompanied by a set
of mixed boundary conditions [14], [15]:

D
∂w(r, t)

∂n
+AX(r, α)cw(r, t) = 0 (2)

in order to incorporate the varying absorption levels of the
sound field’s surfaces in an efficient manner. In the above
equation, n is the unity vector normal to the boundary surface
and AX(r, α) is the factor that correlates the distribution of
the surface absorption given an absorption coefficient α.

III. PROBLEM FORMULATION

In this section, we discretize Eq. 1 and 2 over the space
coordinates, in order to transform the PDE into a system of
Ordinary Differential Equations (ODEs). For this purpose, we
apply an FDM discretization methodology with ∆x, ∆y and
∆z being the step at each spatial coordinate in the cartesian
axis and nx, ny and nz the total number of discretization nodes
per coordinate for different levels of accuracy. Consequently,
the dependent variable w is transformed to:

w(r, t) = w(i∆x, j∆y, k∆z, t) = wi,j,k(t) (3)

Using a second-order difference approximation on the
second derivative, the partial differential equation (PDE) of
Equation 1 for an internal node located at the position (i, j, k)
can be expressed as:

ẇi,j,k(t) =
D

∆x2
(wi−1,j,k(t)− 2wi,j,k(t) + wi+1,j,k(t))

+
D

∆y2
(wi,j−1,k(t)− 2wi,j,k(t) + wi,j+1,k(t))

+
D

∆z2
(wi,j,k−1(t)− 2wi,j,k(t) + wi,j,k+1(t))

− cmwi,j,k(t)
(4)

Then, assuming a uniform discretization step for all spatial
coordinates, the discretized equation for an internal node at
position (i, j, k) can be simplified to:

ẇi,j,k(t) =
D

∆x2
(wi−1,j,k(t) + wi+1,j,k(t)

+wi,j−1,k(t) + wi,j+1,k(t)

+wi,j,k−1(t) + wi,j,k+1(t)

−(6 +
∆x2

D
cm)wi,j,k(t))

(5)

For the surface nodes, we discretize Eq. 2. For the sake of
simplicity, we demonstrate the derived equations on x-axis.

Let the dimensions of the room be Lx, Ly , and Lz , then the
surface nodes located at x = 0 and x = Lx can be written as:

D
∂w(x, t)

∂x
+ cAX(x, α)w(x, t) = 0 at x = 0

−D
∂w(x, t)

∂x
+ cAX(x, α)w(x, t) = 0 at x = Lx

(6)

Note that the spatial derivatives are approximated in the
direction of increasing coordinate x, hence the minus sign at
x = Lx. Although first-order approximations can be applied
on Eq. 6, it is proven to be less accurate than the second-order
approximation of the first derivative [16]. So, by applying
the second-order three-point backward and forward formulae
of the first derivative at the surface points of x-axis, Eq. 6
becomes:

D

2∆x
(3w0,j,k(t)− 4w1,j,k(t) + w2,j,k(t))

+AX0,j,k
w0,j,k(t) = 0

D

2∆x
(3wLx−2,j,k(t)− 4wLx−1,j,k(t) + wLx,j,k(t))

+AXLx,j,k
wLx,j,k(t) = 0

(7)

Then, we express Eq. 7 with respect to w0,j,k(t) and wLx,j,k(t)
respectively and replace them in Eq. 5. This actually means
that the surface nodes are eliminated from the system and their
acoustical density energy is included in the neighboring nodes.
Surface nodes on dimensions y and z are handled in a similar
manner. Therefore, we result to n = nxnynz−2(nx+ny+nz)
equations which are described by Eq. 5 for i = 1, . . . , Lx−1,
j = 1, . . . , Ly−1 and k = 1, . . . , Lz−1.

In case a node is also a sound source, the discretized sound
source density term Pi,j,k(t) is added to Eq. 5. So, the resulting
equation is:

ẇ(t) = Gw(t) +Bu(t) (8)

where N is the number of the internal nodes and p is the
number of sound sources in the room; G ∈ Rn×n is the
coefficient matrix, B ∈ Rn×p is the input-to-state matrix that
corresponds the sound sources to the discretization nodes and
u(t) ∈ Rp is the input vector containing the sound sources
densities.

In numerous instances, it is not necessary to model the
diffusion of sound throughout all internal nodes in a space, but
only at certain points of interest. This leads to the requirement
for a secondary equation that filters out the internal nodes
and monitors sound densities solely at the specific points of
interest. Thus, we can conclude at the following LTI ODE
system:

ẇ(t) = Gw(t) +Bu(t),

y(t) = Lw(t)
(9)

with y ∈ Rq being an output vector with the sound energy
density at the specific points that we want to simulate. L is
the state-to-output matrix that selects q out of n internal states
and corresponds them to the output points. Finally, in case
we want to monitor the sound density on a surface node, the
corresponding row of matrix L instead of ones, it contains the
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coefficients of Eq. 7 with respect to the index of the surface
node whose value needs to be monitored.

IV. MOR BY BT

Bearing in mind the LTI system of Eq. 9, the objective of
MOR is to produce a reduced model as:

˜̇w(t) = G̃ w̃(t) + B̃u(t),

y(t) = L̃ w̃(t)
(10)

with G̃ ∈ Rr×r, B̃ ∈ Rr×p, L̃ ∈ Rq×r and r ≪ n.
The reduced system is a good and robust approximation
of the original system as the output error is bounded, i.e.,
||ỹ(t)− y(t)||2 < ε||u||2 for a given input u(t) and an error
bound ε. Considering Plancherel’s theorem [17], the bounded
output error can be analogously formulated in the frequency
domain as ||ỹ(s)− y(s)||2 < ε||u||2. By taking into account
the transfer functions of the original and the reduced model:

H(s) = L(sI−G)−1B,

H̃(s) = L̃(sĨ− G̃)−1B̃
(11)

then the output error bound in the frequency domain becomes:

||ỹ(s)− y(s)||2 = ||H̃(s)u(s)−H(s)u(s)||2
≤ ||H̃(s)−H(s)||∞||u(s)||2

(12)

where || . ||∞ denotes the L∞-norm, which for rational transfer
functions is the H∞-norm. Consequently, by bounding the
distance between the two transfer functions, the output error
can also be bounded as ||H̃(s)−H(s)||∞ < ε.

MOR methods such as BT take advantage of the controlla-
bility and observability Gramian matrices P and Q which can
be computed by solving the Lyapunov matrix equations [18]:

GP+PGT = −BBT ,

GTQ+QG = −LTL
(13)

The controllability Gramian P represents the degree to
which the states are reachable by the inputs while the observ-
ability matrix Q depicts how observable are the states from
the outputs. The reduced model is constructed by truncating
the states that are either difficult to reach or to observe.
However, since these are two independent metrics, there may
be states that are problematic regarding only one of them,
hence the process balancing. This transformation produces a
balanced realization of the system, which means the system is
described by a degree that combines both the controllability
and observability degrees. Thus, there exists a transformation
matrix T that transforms the model into:

Tẇ(t) = TGT−1(Tw(t)) +TBu(t)

y(t) = LT−1(Tw(t))
(14)

by preserving the transfer function H(s) and making [18]:

P = Q = diag(σ1, σ2, ...., σn) (15)

where σi, i = 1, . . . , n are the Hankel singular values (HSVs)
of the model, which correspond to the square root of the
eigenvalues of the multiplication of the Gramians, i.e., σi =

√
λi(PQ), i = 1, . . . , n. The states of the balanced system of

Eq. 14 that are more observable or reachable correspond to
the largest HSVs. So, if only r of these states are maintained
and the rest n − r are truncated, then the distance between
the transfer functions of the original and the reduced system
is limited to:

||H(s)− H̃(s)||∞ ≤ 2(σr+1 + σr+2 + · · ·+ σn) (16)

Eq. 16 is an a-priori error bound for the order selection of
the reduced model. The complete BT procedure is exhibited
in Alg. 1.

Algorithm 1 Balanced Truncation

1: Compute the Gramians P and Q by solving the Lyapunov
Eq. 13

2: Obtain the Cholesky factors P = ZPZ
T
P and Q = ZQZ

T
Q

3: Calculate the singular value decomposition of ZT
PZQ =

UΣV with Σ = diag(σ1, ..., σn)
4: Compute the truncated part of the balancing transfor-

mations T(r×n) = Σ
−1/2
(r×r)V(r×n)Z

T
Q and T−1

(n×r) =

ZPU(n×r)Σ
−1/2
(r×r)

5: Obtain the reduced matrices as C̃ = T(r×N)CT−1
(N×r),

G̃ = T(r×n)GT−1
(n×r), B̃ = T(r×n)B, L̃ = LT−1

(n×r)

Although BT offers great accuracy, as it provides an a-priori
error that depends on the reduced order, this method has a
noteworthy drawback - the large computational and storage
demands. The first three steps of Alg. 1 are very expensive
tasks of complexity O(n3) and need the storage of the dense
Gramian matrices, even if the system matrices are sparse.

However, in most cases, the number of sound sources
and the output points where we want to monitor the sound
density are much smaller than the states, i.e., p, q ≪ n.
Consequently, the products BBT and LTL have a much
smaller rank than the original system. This is also the case for
the corresponding Gramians [18], which can be approximated
by low-rank products P ≈ ZPZ

T
P and Q ≈ ZQZ

T
Q with

ZP ,ZQ ∈ Rn×k (k ≪ n), instead of the full Cholesky
factorizations. This reduces the complexity and the storage
demands of the SVD in step 3 of Alg. 1 to size k.

For the solution of the Lyapunov equations in low-rank
format, Krylov subspace methods are an efficient and straight-
forward solution. In particular, the extended Krylov sub-
space (EKS) method [11] employs both the standard Krylov
subspace as well as the inverted Krylov subspace, which
radically aids in the system’s convergence. Therefore, we
propose the employment of the EKS method in order to solve
the Lyapunov equations in low-rank format and thus, render
this method suitable for large-scale room acoustics simulation
systems.

A. Low-Rank BT using EKS

Krylov subspace methods are a powerful tool to project
the system onto a subspace of lower dimension, then solve
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TABLE I: Comparison between the reduced model and the original system at t = 10s

Bench- Room Discr. #Sound Original Model Reduced Model Reduction
Speedup

Rel.
mark Size Step Sources Order Exec. Order Reduction Exec. Time- Percentage Error

(m) (m) Time(s) Time (s) Time (s) step (s) (%) (×) (%)
room1 8× 8× 4 1 1 405 0.033 5 0.029 0.003 0.1 98.765 11.00 0.001
room2 8× 8× 4 0.4 2 4851 1.437 9 0.451 0.027 0.2 99.814 53.22 0.027
room3 16× 8× 2 0.2 5 36531 5.944 14 1.863 0.312 0.4 99.962 19.05 0.043
room4 10× 10× 10 0.1 10 704969 105.382 37 13.820 1.836 0.4 99.995 57.40 0.205
room5 12× 12× 12 0.1 20 1367631 474.385 58 53.496 7.927 0.6 99.996 59.84 0.755

the small-scale Lyapunov equations and directly obtain the
low-rank approximations of the Gramians. If we set AE ≡
G,BE ≡ B and denote K ∈ Rn×k as a projection ma-
trix that corresponds to the k-dimensional Krylov subspace
Kk(AE ,BE), then the low-rank solution X ∈ Rn×k of the
controllability Gramian P can be obtained by solving the
small-scale Lyapunov equation:

(KTAEK)X+X(KTAEK)T = −KTBEB
T
EK (17)

Then, X can be back-projected onto the original n-
dimensional space in order to provide a low-rank factor
Z ∈ Rn×k of P as Z = KS, where S results from the
Cholesky factorization of X. Similarly for the observability
Gramian Q, having AT

E ,L
T in place of AE and BE respec-

tively, we obtain Y, the low-rank approximation of Q.
The subspace selection has a fundamental effect on the

quality of the reduction, so, numerous iterations are required
in order for this method to converge. This issue can be
resolved by the EKS method [19], which enriches the standard
Krylov subspace Kk(A,B) with the inverted Krylov subspace
Kk(A

−1,B), producing the EKS:

KE
k (AE ,BE) = Kk(AE ,BE) +Kk(A

−1
E ,BE) =

span{BE ,A
−1
E BE ,AEBE ,A

−2
E BE ,A

2
EBE , . . . ,

A
−(k−1)
E BE ,A

k−1
E BE}

and initializing it with the pair {B,A−1
E B}. The projection

matrix K is constructed iteratively, and the small-scale solu-
tions are solved until a sufficient level of accuracy is achieved.

V. EXPERIMENTAL RESULTS

To experimentally assess the accuracy and scalability of the
proposed methodology, we conducted room acoustic analyses
on five volumes of varying sizes with an average sound
absorption coefficient of a = 1/6 and diverse sound source
densities, as seen in the first four columns of Table I. Room
Size describes the three-dimensional size of each benchmark,
Discr. Size depicts the spatial discretization step of the room
of the FDM method, while #Sound Sources corresponds to
the number of sound sources for each analysis. Finally, all
experiments were executed on a Windows machine with 32GB
memory and a 4.7GHz Intel Core i9 processor with 16 threads
while the proposed methodology was implemented in Python
3.9 using the numerical packages from the Scipy library.

We performed sound density analysis on both the original
and the proposed reduced model at t = 10s and compared the
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Fig. 1: Comparison of the sound energy density for room1 at
t = 10s. The sound energy value at each cubic node is shown
as a tuple, with the reduced model solution in black and the
original system solution in blue text.
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Fig. 2: Transient sound energy response for an internal node
at room1 in the range [0, 10] seconds.

accuracy and the execution time of both transient analyses.
The results of our experiments are illustrated in the remaining
columns of Table I, where the fifth and sixth columns describe
the original system, i.e., its order and transient analysis execu-
tion time. The next four columns refer to the proposed reduced
model. In particular, Order is the resulting reduced order of the
model and Reduction time is the time needed for the reduction
procedure, Exec. time refers to the total time of the transient
analysis while Timestep Time is the execution time of each
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timestep. Finally, the last three columns correspond to the
percentage of the order reduction between the two models, the
execution speedup achieved by our approach in comparison
to the original system and the relative error between the two
methods. As can be observed, our method can achieve extreme
reduction percentages of 99.996% with a very low relative
error of less than 0.8% while achieving a speedup of the
transient analysis of 60×.

To further illustrate the reliability of the proposed method,
we provide graphical comparisons of the two methods. In
Fig. 1, we provide the spatial distribution of sound density
for room1 benchmark at t = 10s. As can be easily seen, in
almost all monitoring points, our method offers very reliable
accuracy. Furthermore, in Fig. 2, we provide a comparison
between the transient analyses of the original and the reduced
model on an internal node at t = 10s. As expected, the two
responses exhibit an exceedingly high degree of concordance,
as they are almost indistinguishable from each other. The
above results demonstrate that system theoretic techniques like
BT can achieve very high reduction percentages, of about
99%, and thus can lead to very compact reduced-order models
fro the efficient capture of the sound density effects in room
acoustic models.

VI. CONCLUSIONS

In this paper, a system theoretic methodology for efficiently
simulating sound density in very large room acoustic models
was introduced. The proposed approach capitalizes on the fact
that sound density measurements are often only necessary at
specific locations, and an efficient BT method to reduce the
system’s order and speed up the transient analysis. According
to experimental results, the reduced model produced by this
method can achieve an order reduction percentage of about
99.9% resulting in a speedup of up to 59× with respect to the
original system, with a relative error that is below 0.75%.
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