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Abstract—Majority of speech emotion recognition (SER) sys-
tems are developed using databases with simulating speech
performed by professional actors. Whereas, concerning real-
world deployment, the SER inputs are mostly spontaneous
utterances. Several SER researchers reported that the perfor-
mance of SER models developed using acted emotional data
degrades for spontaneous inputs. In this work, we improve the
SER performance under the elicitation-based data expression
mismatch scenarios by utilizing multi-task learning (MTL) with
data expression recognition as the auxiliary task. We use the
ECAPA-TDNN architecture with MFCCs and wav2vec 2.0 pre-
trained embeddings as features. We conduct this study on the
IEMOCAP and BAUM-1 databases. The proposed MTL-based
method achieves state-of-the-art performance on the SER task.
Further, we conduct an emotion-specific analysis and show that
the data expression knowledge mostly helps to classify the highly
aroused emotions.

Index Terms—Speech emotion recognition, Data expression
mismatch, Acted and spontaneous emotions, Self-supervised fea-
tures, Multi-task learning.

I. INTRODUCTION

Speech emotion recognition (SER) is an important task
of affective computing, that aims to enable the machine to
automatically recognize the human emotions from only audio
information. The trend of verbal human-to-computer interac-
tion (HCI) is gradually increasing with the evolution of smart
applications. With this, the relevance of effective SER systems
is increasing. SER is utilized in several real-world applications
such as for voice assistants, conversation monitoring, and
analysis in call centers or interview scenarios [1].

A major challenge for developing effective SER systems
is to generalize for domain variations, majorly caused by
mismatches in speakers, languages, background noise, and mi-
crophones. Many notable research works attempted to address
this issue of domain-sensitive SER performance using cross-
speaker, cross-language, cross-dataset, cross-modality frame-
works [2]–[4]. However, another important aspect of SER
domain variability lies in the form of the emotion elicitation
process. From the existing SER literature, we observe that the
majority of the widely used SER databases contain acted emo-
tions [5], [6]. The data collection protocols of these databases
make professional actors perform different emotions on some
predefined scripts. Due to the trained manner of expressing the
emotions and the standard articulations, such data contains
well-defined distinctions among the emotions [7]. However,
considering real-world usability, the inputs to the SER models

trained with acted data are more likely to contain sponta-
neous (spont.) utterances. The perceivable emotions under
such situations may not be very well-differentiated [8]. For
example, for any specific emotions, the pitch contours may
vary significantly for acted data, but for spontaneous, it may
remain relatively flat [9]. Different studies reported that the
performance of SER models developed using acted emotional
data degrades for spontaneous inputs, which is not desirable
for practical SER applications [8]–[11]. Hence, addressing the
impact of data expressions, such as acted or spontaneous, due
to various emotion eliciting approaches is important.

In the SER literature, few studies have attempted to address
these data expression mismatch issues. In [12], Li et al.
investigated various transfer learning techniques using a feed-
forward neural network and progressive neural network for
leveraging acted speech data to improve emotion recognition
of spontaneous speech. In [13], Feng et al. used a few-shot
learning approach that transfers emotion-specific knowledge
from acted to spontaneous speech. In [14], Li et al. investi-
gated transfer learning between utterances with fixed scripted
lexical contents and utterances recorded spontaneously. They
used domain adversarial training with softlabel loss. However,
while trying to adapt for target data, the domain adaptation
based methods have been reported to degrade performance on
utterances coming from domains similar to the source-data.

In this work, concerning the above mentioned factors, we
follow a different approach for the assessment and improve-
ment of SER generalization against data expression mismatch
conditions. Instead of focusing only on the spontaneous target
domain, we aim to improve the overall SER system perfor-
mance by utilizing elicitation-dependent emotional cues. As a
preliminary experiment, we first train three independent SER
systems with acted, spontaneous, and combined training data
and evaluate them on acted and spontaneous test utterances
separately. Apart from the earlier reported [8], [9] performance
mismatch caused by data expression-mismatch, we further
observe that compared to the combined model, SER systems
can further improve the performance if it individually focuses
on elicitation-specific emotion discriminating cues. This obser-
vation motivates us to induce data expression discriminating
knowledge during the SER training phase so that utterances
of each kind of data expression can focus on their own
emotion discriminating cues. Therefore, we develop Multi-
Task Learning (MTL) based SER systems with elicitation-
dependent data expression recognition as additional tasks.
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In SER literature, MTL has been explored with different ad-
ditional tasks, such as identification of gender [15], corpus do-
main recognition [4]. However, the exploration of elicitation-
based data expression mismatch is little explored. Mangalam
et al. [16] used hierarchical classifier and spontaneity detection
based MTL tasks in SER. Zhang et al. [17] considered acted
and spontaneous utterances from two different databases of
different languages and showed that merging and applying
MTL on them helps improving generalization. However, by
doing so, we suspect that database mismatches, such as dif-
ferences in language, gender, and age distributions of speakers,
recording environment, and equipment, can aid the MTL
performance with an overfitted discrimination between acted
and spontaneous classes [18]. Hence, it is not clear whether
the elicitation-aware knowledge is effectively incorporated in
the SER system. To mitigate this issue, we utilize the acted
and spontaneous utterances within the same database.

The contribution of our work is the following: (1.) We
develop elicitation-based data expression aware SER systems
under a more practical consideration, where both acted and
spontaneous data are collected from the same database. (2.)
We validate the effectiveness of the proposed within-corpora
MTL-based SER independently on two different databases
and languages. (IEMOCAP-English database and BAUM-1-
Turkish database). We then compare our system by developing
an inter-corpora MTL system, where acted and spontaneous
utterances are collected from different databases (languages).
(3.) We conduct an extensive emotion-specific study revealing
recognition of what kinds of emotions benefit the most by
incorporating elicitation-awareness using the MTL framework.

The rest of this work is organized as follows: Section II
provides the database descriptions. In Section III, the method-
ologies are discussed. Experimental setups and results are pre-
sented in Section IV followed by the conclusions in Section V.

II. DATABASE DESCRIPTION

We have used two different emotional speech databases in
this work. These are the Interactive Emotional Dyadic Motion
Capture (IEMOCAP) database and the BAUM-1 database. In
both databases, audio recordings are collected in two different
scenarios: scripted play (acted) and spontaneous dialogs.

IEMOCAP database: IEMOCAP [19] database is a large
and widely used multimodal conversational English database
in SER research. It consists of five dyadic sessions per-
formed by ten speakers, each with a scripted (acted) and
improvised (spontaneous) interaction. This database includes
speech, facial recordings, and text transcriptions for anger,
happy, neutral, sad, fear, disgust, frustration, excitement, and
surprised emotions. Based on prior research [20], we only use
the audio data from anger, excitement, happy, neutral, and sad
emotion classes and merge the excitement utterances with the
happy emotion class to deal with the data imbalance. The final
dataset has 5,531 utterances (angry 1,103, happy 1,636, neutral
1,708, sad 1,084). Out of 5,531 utterances, 2588 utterances are
scripted, and 2,934 are improvised. The database is sampled
at 16 kHz, with a mean utterance duration of 4.52s.

BAUM-1 database: BAUM-1 [21] database is an emotional
audio-visual face database of affective and mental states in
the Turkish language. This database includes 199 acted audio
utterances in BAUM-1a data and 501 spontaneous audio data
in BAUM-1s data representing six (anger, boredom, disgust,
fear, happiness, and sadness) emotional states. The audio
samples in this database are collected from 31 subjects which
are recorded at 44.1 kHz sampling rate. The mean duration of
the audio files in this database is 4.10s.

III. METHODOLOGY

A. Data preprocessing and feature extraction

We have downsampled the BAUM-1 database to 16 kHz
sampling frequency before the feature extraction step. To
obtain reliable results, we conducted 5-fold cross-validation
(CV) approach for both databases and reported the average
results [22]. For the IEMOCAP database, we perform leave-
one-session-out 5-fold CV. At each fold, four sessions are used
for training and validation sets, and the remaining one session
is used for testing set [23]. For the BAUM-1 database, we
use an 80:10:10 ratio split training, validation, and testing
approach for each fold of 5-fold CV.

As a baseline feature, we extract the most widely used
40-dimensional MFCCs speech features with a hamming
window of 20ms and a hop size of 10ms. Following the
effectiveness of self-supervised learning in different speech
processing applications [24], we primarily focus on using
wav2vec 2.0 pre-trained model (“wav2vec2-large-960h”) [25]
as a feature extractor in our work. wav2vec 2.0 optimizes a
contrastive predictive coding (CPC) based loss function during
pre-training with 960 hours of unlabeled Librispeech data.
It consists of three stages: (1.) local encoder: convolutional
blocks that extract embeddings from raw waveform as latent
representation, (2.) contextualized encoder: consisting of 24
transformer blocks with 16 attention heads, (3.) quantization
module: for discretizing latent representation of local encoder.

B. Classifier architecture description

In this work, we use the ECAPA-TDNN [26] architecture
to develop the SER systems. In our previous study [27],
we have shown that this architecture outperformed the con-
ventional x-vector based TDNN architecture. ECAPA-TDNN
introduces 1-dimensional Squeeze-Excitation Residual block
(SE-Res2Block), which models the channel interdependencies
and enhances the multi-scale local contexts. We have used 512
channels in the convolutional frame layers and 192 nodes in
the final fully connected layer. The outputs from the shallower
level SE-Res2Block are concatenated and then fed to the next
Conv1D+ReLU layer. Instead of statistical pooling of the
x-vector, ECAPA-TDNN applies attention mechanism across
the channels and captures global utterance characteristics in
the pooling layer to obtain an utterance-level feature vector,
i.e., embeddings. The embeddings learned from this model
carry more robust target-dependent information due to the
Multi-layer Feature Aggregation (MFA). We use Adam as the
optimizer with a learning rate of 0.001 and Additive Angular
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Margin (AAM)-softmax as loss function. The batch size is set
to 64, and the number of epochs is limited to 50.

IV. EXPERIMENTS & RESULTS

The performance of the SER systems are evaluated using
both Weighted Accuracy (WA) and Unweighted Accuracy
(UWA) as the test sets for both the databases are imbalanced
between different emotion categories.

A. Preliminary experiment: assessment of performance degra-
dation due to data expression mismatch

In the preliminary experiment, out of the five sessions in
the IEMOCAP database, we keep the first four sessions for
system training and the fifth one for evaluation. From the
training set, we separate the acted and spontaneous utterances
and create three different training sets: (i) acted training set, (ii)
spontaneous training set, (iii) combined training set. Similarly,
the test set is also segregated into acted and spontaneous parts.
In Table I, we present the number of utterances for each
emotion in the acted and spontaneous training and test sets.
The training set is split randomly in training and validation
parts by 80 : 20 ratio and individual SER systems are trained
using the MFCC feature and ECAPA-TDNN architecture.

TABLE I: Number of acted and spontaneous utterances in
the preliminary experiment for each emotion class in the
IEMOCAP training and testing sets.

Emotion Training Testing
Total Acted Spont. Total Acted Spont.

Anger 933 675 258 170 139 31
Happy 1194 527 667 442 162 280
Neutral 1324 512 812 384 97 287

Sad 839 364 475 245 112 133

The results of the preliminary experiment are presented
in Table II. From this Table, we observe the performance
degradation due to the data expression mismatch in train-test
pairs. Compared to the combined trained model, the accuracy
of the acted trained model improves by 5.50% on the acted
test data, and the accuracy of the spontaneous trained model
improves by 4.15% on the spontaneous test data. The acted and
spontaneous trained models learn their respective expression-
specific emotion discriminating cues, and that results in better
SER performances compared to the combined trained models.
From the results, we hypothesize that if we incorporate the
data expression awareness into our combined SER model, the
overall SER performance can be improved.

TABLE II: SER classification accuracy (in %) of the prelimi-
nary experiment with the IEMOCAP database.

Feature Testing Training

Combined Acted Spont.

MFCC Acted 50.57 56.07 47.70

Spont. 54.70 50.33 58.85

B. Data expression recognizing multi-task learning (MTL) in
ECAPA-TDNN based SER model

To incorporate the data expression specific knowledge in our
system, we apply the MTL approach in the ECAPA-TDNN

Fig. 1: Working principle of the ECAPA-TDNN architecture
with the data expression recognition based MTL extension.

architecture by hard-parameter sharing. After the channel
attentive pooling layer in ECAPA-TDNN, we insert another
parallel classifier branch consisting of a fully-connected layer
followed by a softmax layer. We choose the binary classifi-
cation of elicitation-based data expression recognition as the
additional task. MTL enables the ECAPA-TDNN model to
jointly learn both the tasks by optimizing a combined loss
function corresponding to the two tasks, Lemo (loss of emotion
prediction) and Lexp (loss of expression prediction). The total
loss to be optimized is expressed as:

L = (1− α) ∗ Lemo + α ∗ Lexp (1)

α decides the relative weights of both tasks. We experiment
with different choices of α and set it empirically to 0.1 with a
linear increase of 0.05 in each epoch. The working principle
of applying MTL in the ECAPA-TDNN classifier is shown in
Fig. 1. The MTL-incorporated ECAPA-TDNN is trained with
the similar training protocols as stated in Section III-B.

TABLE III: Performance of IEMOCAP and BAUM-1
databases for two different features in terms of WA(%) and
UWA(%).

Feature Method IEMOCAP BAUM-1

WA UWA WA UWA

MFCC w/o. MTL 54.25 53.78 50.24 44.12

w. MTL 55.43 55.98 53.08 46.89

wav2vec 2.0 w/o. MTL 67.71 68.80 50.82 48.51

w. MTL 72.79 72.82 59.02 53.92

For both the databases, we train the individual MTL-
extended ECAPA-TDNN models corresponding to each fold
and present the averaged SER performances in Table III.
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This Table also includes the SER performances without the
MTL for comparative analysis. Table III shows that for the
MFCC feature, the MTL experiments improve the SER WA by
1.18% and 2.84% for the IEMOCAP and BAUM-1 databases,
respectively. For wav2vec 2.0 feature, the WA improvements
due to MTL is 5.08% and 8.20%, for IEMOCAP and BAUM-1
database, respectively. The performance improvements across
multiple databases and features prove the effectiveness of
our hypothesis that inducing data expression awareness while
learning emotion discrimination is useful. The relative perfor-
mance improvements due to MTL inclusion are more for the
wav2vec 2.0 features compared to MFCC features. The self-
supervised pre-training of the wav2vec 2.0 architecture enables
the extracted features to carry more generalized underlying
audio representations [25]. It leads to better capturing of
the data expression distinctive information for the wav2vec
2.0 extracted features. On IEMOCAP database, incorporating
our MTL method in SER with wav2vec 2.0 feature achieves
72.82% UWA, which is comparable to the previous works as
shown in Table IV. For BAUM-1 database, due to different
data organization and evaluation protocols, we are unable to
compare the results with the existing literature. However we
observe significant improvements in the performance of the
BAUM-1 database by introducing MTL.

TABLE IV: Performance comparison for IEMOCAP database.

Method Modalities CV UWA (%)
Peng et al. [28] Audio 5-fold 62.60
Liu et al. [23] Audio 5-fold 70.78

Sajjad et al. [29] Audio 5-fold 72.25
Ours (w/o. MTL) Audio 5-fold 68.80
Ours (w. MTL) Audio 5-fold 72.82

C. Quantitative method explaining how the interior modula-
tion of MTL improves SER performance

To quantitatively explain the interior modulation of the MTL
framework, using wav2vec 2.0 feature, we compute the pattern
separability for the emotion recognition branch’s embedding
for the two classifiers with and without MTL. From these
SER models, embeddings are extracted for the evaluation set
of IEMOCAP and BAUM-1 database. For N emotions, to
compute pattern separability, we measure the average of NC2

pair-wise Fisher discriminant ratios of the embeddings.
We also measure pattern separability for the embeddings

of two elicitation-based data expression categories. As shown
in Fig. 2, with MTL, the emotion embeddings show higher
emotion-class separability and greater robustness to data ex-
pression mismatch due to reduced expression-class separabil-
ity. This quantitative experiment shows the effectiveness of the
developed MTL-based SER system.

D. Criticality of using acted and spontaneous speech recorded
under the same condition

A key contribution in this paper compared to [17] is
the choice to use datasets that have both acted/spontaneous
speech recorded under the same condition. To demonstrate
the criticality of this change, we simulate the condition of
selecting individual types of data expressions from different

Fig. 2: Pattern separability of emotion and data expression
embeddings with and without applying MTL.

datasets. We have applied the MTL on two cross-dataset set-
tings, (i) by selecting acted and spontaneous speech utterances
from IEMOCAP and BAUM-1 databases, respectively (Cross-
dataset1), and (ii) spontaneous and acted speech utterances
from IEMOCAP and BAUM-1 databases, respectively (Cross-
dataset2). We consider the common emotions (angry, happy,
sad) between the two datasets for the cross-dataset settings. We
then present the data expression recognition accuracy (ERA)
results for same-dataset and cross-dataset settings in Table V.
For cross-dataset settings, we suspect that the additional task
does not purely incorporate elicitation-aware information in
the SER performance. This is because other dataset mismatch
factors, such as language, speaker, and recording environment,
can also contribute as discriminating cues in the additional
task, which is reflected by the prominently higher ERA (nearly
100%) for the cross-dataset setting as compared to the same-
dataset setting.

TABLE V: Performance of the same-dataset and cross-dataset
MTL frameworks for the IEMOCAP and BAUM-1 databases.

Corpora setting Same-dataset Cross-dataset

Method IEMOCAP BAUM-1 Cross-dataset1 Cross-dataset2

WA UWA WA UWA WA UWA WA UWA
w/o. MTL 67.71 68.80 50.82 48.51 80.49 80.74 80.15 80.67

w. MTL 72.79 72.82 59.02 53.92 83.23 82.80 82.33 81.12

ERA (%) 88.72 87.50 98.30 98.15

E. Individual emotion class specific analysis
In Table VI, we present the UWA of each emotion class for

both the databases. Here, our key focus is the relative perfor-
mance improvements for the individual emotion classes due
to the MTL incorporation. From the results, we observe that
for IEMOCAP and BAUM-1 databases with MFCC feature,
the highest performance improvement of 7.66% and 6.67% is
achieved for the angry emotion, respectively. Similarly, with
wav2vec 2.0 feature, the highest performance improvement of
11.94% and 14.29% is achieved for the angry emotion for
IEMOCAP and BAUM-1 database, respectively. We further
observe that apart from angry, the happy emotion also gains
noticeable performance improvements due to the MTL train-
ing. Whereas, we find that there is lesser variation in the SER
performance for the neutral emotions due to the inclusion of
MTL. These observations reveal a trend that the prediction
performance of the highly aroused emotion classes attains the
maximum benefit due to data expression-aware MTL training
for both databases.
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TABLE VI: Emotion-specific SER performance analysis for the inclusion of data expression recognizing MTL approach.

Database Feature Model True Positive Rate (TPR) (%) UWA
(%)

Angry Happy Neutral Sad Disgust Fear Boredom

IEMOCAP
MFCC w/o. MTL 59.41 45.57 55.75 54.40 - - - 53.78

w. MTL 67.07 47.26 53.90 55.69 - - - 55.98

wav2vec 2.0 w/o. MTL 68.65 59.78 75.45 71.33 - - - 68.80
w. MTL 80.59 64.67 72.69 73.33 - - - 72.82

BAUM-1
MFCC w/o. MTL 47.30 27.77 - 28.33 61.04 35.10 65.19 44.12

w. MTL 53.97 25.15 - 36.22 64.35 36.28 65.37 46.89

wav2vec 2.0 w/o. MTL 78.57 71.43 - 56.86 29.43 33.33 21.43 48.51
w. MTL 92.86 74.51 - 56.50 29.41 41.67 28.57 53.92

V. CONCLUSIONS

In the literature, researchers have reported that the perfor-
mance of the SER systems, trained with acted data, degrades
when spontaneous utterances are used for evaluation. In this
work, we first analyze this performance degradation due to
the data expression mismatch. Our analysis also shows that
the overall SER performance can potentially improve by
separately focusing on elicitation-based data expression cues.
Based on this observation, we extend the SER classifier using
multi-task learning with data expression recognition as the
auxiliary task. The results show that across multiple databases,
the MTL approach prominently improves the overall SER
performance by achieving results that are comparable with
the state-of-the-art. Finally, we present an emotion specific
analysis and reveal a trend that the highly aroused emotions
benefit the most in SER performance due to the MTL inclu-
sion. Further investigation into this can be a promising future
research direction. This study addresses a practical challenge
in SER research and enhances the efficient applicability of
SER systems for real-world scenarios.
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