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Abstract—Varying conditions between the data seen at training
and at application time remain a major challenge for machine
learning. We study this problem in the context of Acoustic Scene
Classification (ASC) with mismatching recording devices. Previ-
ous works successfully employed frequency-wise normalization
of inputs and hidden layer activations in convolutional neural
networks to reduce the recording device discrepancy. The main
objective of this work was to adopt frequency-wise normalization
for Audio Spectrogram Transformers (ASTs), which have recently
become the dominant model architecture in ASC. To this end,
we first investigate how recording device characteristics are
encoded in the hidden layer activations of ASTs. We find that
recording device information is initially encoded in the frequency
dimension; however, after the first self-attention block, it is
largely transformed into the token dimension. Based on this
observation, we conjecture that suppressing recording device
characteristics in the input spectrogram is the most effective. We
propose a frequency-centering operation for spectrograms that
improves the ASC performance on unseen recording devices on
average by up to 18.2 percentage points.

Index Terms—Domain Adaptation, Recording Device Mis-
match, Audio Spectrogram Transformers

I. INTRODUCTION

Deep neural networks have become state-of-the-art tools
for audio-related signal-processing tasks, such as acoustic
scene classification, audio tagging, and sound event detection
[1]–[3]. These models are known to generalize well if
the recording conditions during training and later during
inference remain the same; however, the generalization
degrades when there is a distribution mismatch between
the training and the testing data. Figure 1 illustrates this
problem on an Acoustic Scene Classification (ASC) task:
The performance of an Audio Spectrogram Transformer
(AST) [1] finetuned on audios recorded with one specific
recording device is significantly worse on audios from
unseen recording devices; domain adaptation techniques are
required to alleviate the domain discrepancy. In this work, we
study this domain adaptation problem in the context of audio
classification with mismatching recording devices using ASTs.

Previous investigations into the feature maps produced by
Convolutional Neural Networks (CNNs) [5] in the image
domain [6]–[8] determined that visual domain characteristics
(such as image style) are largely encoded in the channel di-

Fig. 1. Acoustic scene classification performance of a vanilla audio spectro-
gram transformer on the TAU Urban Acoustic Scenes data set [4] grouped by
recording device. Classification accuracy degrades significantly for recording
devices that are not present in the training set.

mensions of hidden representations. Channel-wise normaliza-
tions of the feature maps (Instance Norm [9]) proved effective
in alleviating the domain discrepancy. However, unlike images,
which encode spatial dimensions along both height and width
of the input, height and width in visual audio representations
encode frequency and time. While the spatial dimensions
in images only carry little domain-relevant information, the
frequency dimension in audio spectrograms carries important
domain characteristics, such as information about the record-
ing device. This is illustrated in Figure 2, which shows a side-
by-side comparison of parallel audio recordings taken with
three different recording devices. All three spectrograms show
similar textures; their main difference is in the frequency bins’
magnitudes. This consequently affects how frequency informa-
tion is spread in the hidden representations: Kim et al. [10]
demonstrated that recording-device characteristics are not only
present in the channel-wise statistics but also in the frequency-
wise statistics of CNN hidden layer activations. To reduce the
domain gap in audio CNNs, they introduced a combination of
layer normalization [11] and frequency normalization called
Relaxed Instances Frequency-wise Normalization (RFN) for
inputs and hidden activations.
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Fig. 2. From left to right: Time-aligned recordings from devices A (Soundman OKM II Klassik/Studio A3 Microphone & Zoom F8 Recorder), B (Samsung
Galaxy S7), and C (iPhone SE) from the TUA Urban Acoustic Scenes data set 2019 [4]. While the content is similar, the frequency magnitudes along the
time dimension differ among the devices.

Fig. 3. Classification accuracy of a random forest classifier on frequency-, channel-, and time-wise mean and standard deviation at different network depth
in a self-supervised pretrained audio spectrogram transformer.

Audio Spectrogram Transformers (ASTs) have recently be-
come the new dominant model architecture for audio recog-
nition tasks, outperforming CNNs on a broad variety of tasks
(tagging, classification, etc.) and acoustic domains (speech,
music, general sounds) [1]–[3]. Our study sets out to inves-
tigate the usefulness of frequency normalizations for domain
generalization in ASTs. CNNs use convolutions, which are
local operations that only consider a limited context, while
the self-attention layers in transformers operate on the whole
spectrogram. This raises the question of how recording device-
specific information is dispersed in hidden activations of
transformers and whether similar frequency-wise normaliza-
tion strategies as introduced for CNNs can be employed
to encourage recording device invariance. To address this
question, we examined the hidden layer activations of ASTs to
understand how and to what degree recording-device-specific
information is encoded in their representations. Based on
the observations of this initial investigation, we introduce a
relaxed frequency-wise spectrogram centering operation that
considerably improves the performance of ASTs on unseen
recording devices. In the experiment section, we demonstrate
that this simple method compares favorably to previously
introduced methods for CNNs that normalize both the input
and hidden activations.

II. ANALYSIS OF AST REPRESENTATIONS

We focus on self-attention-based models and investigate
where and to what degree recording-device characteristics are
encoded in their hidden layer activations. To this end, we use
an AST that was pre-trained on AudioSet in a self-supervised
manner, to embed the TAU Urban Acoustic Scenes data set
[4] (see Section IV-C for details). Unlike CNNs, Spectrogram
transformers process their input by cutting two-dimensional
spectrograms into patches, converting them to one-dimensional

tokens, and flattening the result to obtain a sequence. In order
to restore the time and frequency structure from this sequential
representation for analysis, we keep track of the time and
frequency position of each token and reshape the activations
after each self-attention block into a three-dimensional tensor
x ∈ RD×F×T where D, F and T are the sizes of the token,
frequency and time dimensions, respectively. To quantify the
importance of each dimension, we train a random forest
classifier to predict the recording device or acoustic scene
labels from the activations’ dimension-wise mean and standard
deviation statistics. We report the classification accuracy in
Figure 3. We make three key observations:

• First, similarly to audio CNNs [10], ASTs concentrate
recording device information in the frequency and to-
ken dimensions; time-wise statistics are less predictive
(compare the left two plots to the rightmost one in Fig.
3). However, unlike in CNNs, the amount of device
information in the frequency statistics drops significantly
after the first self-attention block. We hypothesize that
this is due to the global nature of self-attention, which
draws information from the whole sequence rather than
just from a local context, and conclude that frequency-
wise normalization of hidden representations after the
first self-attention block would only have a minor impact.

• Next, we note that hidden layers’ frequency- and token-
wise statistics are predictive of both the recording device
and the acoustic scene class, indicating that normal-
izations along the token dimension might also have a
negative impact on the acoustic scene target prediction.

• Finally, we observe that the mean over the frequency
dimension predicts the recording device and the acoustic
scene better than the standard deviation. Therefore, we
conjecture that centering the spectrogram instead of both
centering and whitening will be sufficient for better
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device generalization.

III. RELAXED INSTANCE FREQUENCY-WISE CENTERING

Based on our previous analysis of the hidden-layer activa-
tions in transformers, we suspect that most of the recording
device characteristics can be removed by centering the input
spectrogram along the time dimension. We, therefore, define a
frequency-wise centering operation for inputs or hidden layer
representations x ∈ RD×F×T :

FC(x) := x:,:,: −
1

D · T

D∑
i=1

T∑
j=1

xi,:,j

For mono-channel spectrograms, the token dimension D re-
duces to a single channel. While this formulation is general
enough to be used in arbitrary hidden layer activations, our
previous analysis suggested that applying it after the first self-
attention block will have little effect. We, thus, only apply it
to the input spectrogram, and we evaluate this decision in the
experiment section. Furthermore, since our previous analysis
showed that the frequency-wise means are also correlated to
the prediction target, we use a Softened version of Frequency-
wise Centering (SFC) which is simply a convex combination
of the original activations and the frequency-wise centered
activations:

SFC(x) = λ · FC(x) + (1− λ) · x

λ controls the trade-off between the original and centered
activations.

IV. EXPERIMENTS

A. Data Set

We use the TAU Urban Acoustic Scenes 2020 data set [4]
for our experiments as it provides prediction targets (ten acous-
tic scene locations) and recording device information which we
need to estimate the device generalization performance. We
train our system on the 10, 215 10-second snippets recorded
with device A, and evaluate the device generalization on the
2, 970 segments in the evaluation set, which were recorded
with real devices A, B, C, and simulated devices S1-S6. The
samples in the evaluation set are class and recording-device
balanced, so we use accuracy to measure task performance.
We would like to refer the reader to the data set description
[4] for specifics on the recording procedure and creation of
simulated devices.

B. Features Computation

We convert the audio recordings into Log-Mel spectrograms
by computing a 1024-point Short Time Fourier Transform
using 40ms windows and a hop size of 10ms. We apply a
Mel-scaled filter bank with 80 filters for frequencies between
0 and 8000Hz and convert the result to dB by applying a log
transformation. The samples are normalized during training by
subtracting the training set mean and dividing by the training
set standard deviation.

C. Pretraining with Masked Spectrogram Modeling

Audio Spectrogram Transformers require a lot of training
data to generalize; we, therefore, employ a self-supervised pre-
training strategy called Masked Spectrogram Modeling (MSM)
[12]–[14] to alleviate this problem. In MSM, random parts
of the spectrogram are removed, and the model is trained
to predict the masked parts based on the available context.
By doing so, the model is encouraged to learn a meaningful
high-level representation that captures the underlying structure
of sounds. Our MSM framework follows an encoder-decoder
architecture and we choose a standard ViT architecture [15]
with 12 self-attention blocks, 12 encoder heads, and a token
dimensionality of 768 for the encoder. The decoder is smaller
with only 4 self-attention blocks, 6 attention heads, and a
dimensionality of 384. Spectrograms are processed in the
following manner: The mono-channel input spectrogram x ∈
R1×F×T is randomly shortened to 6 seconds to reduce training
time and cut into non-overlapping 16×16 patches. Each patch
is converted into a one-dimensional token of size D using a
linear transformation. Separate learnable positional encodings
for time and frequency dimensions are added to the tokens. We
randomly drop 75% of the input tokens and feed the resulting
sequence into a self-attention-based encoder to obtain a high-
level representation. The previously dropped tokens are then
replaced in the encoded sequence with placeholder tokens,
positional encoding is added, and the result is fed through
the self-attention-based decoder. A linear projection head is
used to generate spectrogram patches from the decoder output
tokens. The model is trained to generate the removed parts
of the input spectrogram, which is optimized by minimizing
the mean squared error. We train the model for 100 epochs on
AudioSet [16] with the Adam optimizer (β1 = 0.9, β2 = 0.95)
[17], a batch size of 2048 and a weight decay of 0.05. The
learning rate is linearly increased from 10−6 to 3 ·10−4 in the
first 20 epochs and decayed with a cosine schedule afterward.
We validate the performance of the embedding model on the
HearEval benchmark [18] in Table I and find the results on
par with comparable models.

TABLE I
HEAR EVAL ENVIRONMENTAL SOUND TASKS BENCHMARK [18] RESULTS

OF OUR PRE-TRAINED MODEL COMPARED TO [14].

ESC-50 [19] FSD50K [20] Gunshot [21]

MSM [14] 85.6 52.2 96.4
ours 86.8 52.4 91.4

D. Fine Tuning

For fine-tuning on the TAU Urban Acoustic Scenes data
set [4], we discard the decoder and linearly interpolate the
positional encoding to handle spectrograms of 10 seconds in
length. The spectrogram processing is similar to the procedure
described above, but only 40% of the input tokens are dropped
[2]. In addition, we use gain augmentation with ±7db, and
MixUp [22] on the raw audio waveforms (p = 0.5 and α = 2.),
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TABLE II
DEVICE-WISE COMPARISON OF ASC PERFORMANCE OF OUR METHODS TO THE BASELINES. COLUMNS PT AND HN INDICATE PRE-TAINING WITH

CENTERING AND WHETHER THE NORMALIZATION WAS USED ON HIDDEN ACTIVATIONS, RESPECTIVELY.

λ PT HN all seen unseen

Dev. ID ∆ A B C S1 S2 S3 S4 S5 S6 avg ∆

Baseline 0.0 ✗ ✗ 47.7± 1.6 +0 82.2 52.0 66.0 34.7 31.3 40.7 39.9 41.0 41.3 43.4 +0
GFN − ✗ ✗ 42.1± 1.0 −5.6 80.7 46.8 65.8 31.7 25.9 32.3 32.8 31.3 31.5 37.3 +5.6
RFN [10] 0.5 ✗ ✓ 49.9± 0.1 +2.3 57.7 51.4 51.1 50.3 49.2 49.0 49.9 47.6 43.1 48.9 +5.6
RFN 0.9 ✗ ✗ 60.7± 0.3 +13.0 73.0 61.2 68.1 57.3 54.6 60.1 58.2 58.8 54.9 59.1 +15.8

SFC 0.4 ✗ ✗ 50.4± 0.3 +2.8 84.0 55.3 67.8 43.1 31.7 41.1 42.7 44.3 43.7 46.2 +2.9
SFC 0.9 ✗ ✗ 62.9± 0.6 +15.2 73.8 65.2 71.0 60.8 54.7 63.9 57.0 59.8 59.7 61.5 +18.2
SFC 1.0 ✗ ✗ 62.1± 0.1 +14.4 72.7 65.8 68.7 58.1 54.4 62.5 58.3 60.2 57.8 60.7 +17.4

SFC 0.9 ✓ ✗ 55.1± 1.0 +7.5 79.8 58.2 68.8 47.8 44.8 49.0 46. 52.1 49.1 52.0 +8.7

Mixup on the Log-Mel spectrogram (p = 1.0 and α = 0.3)
and SpecAugment [23] with maximum frequency and time
width of 30 and 192, respectively. The model is trained for
100 epochs using Adam optimizer with weight decay 10−4

and a batch size of 64. The learning rate is linearly increased
to 5 · 10−5 during the first five epochs and decayed using the
cosine decay rule.

E. Baselines

We compare our method to a weak baseline without a
domain adaptation strategy (λ = 0) and three strong baselines
that employ frequency-wise normalizations: first, Global Fre-
quency Normalization (GFN), which uses frequency normal-
ization statistics computed over the training data set. Second,
Relaxed Instance Frequency-wise Normalization (RFN) [10],
which was originally introduced for CNNs and uses a combi-
nation of layer normalization [11] and instance frequency-wise
normalization of both the input and hidden activations. And
thirdly, a modified version of RFN that only normalizes the
input spectrogram.

V. RESULTS

We run three repetitions of grid searches over λ in
{0.0, 0.1, . . . , 1.0} for SFC and both variants of RFN and
report the best average performance together with the best
value for λ in Table II. Compared to the weak baseline with
λ = 0, SFC with λ = 0.9 increases the performance on
unseen recording devices by 18.15 pp. However, we also
notice a considerable drop in performance on recording device
A, namely by 8.3 pp. With λ = 0.4, the performance across
all recording devices increases, but only moderately. For the
original version of RFN, we obtain the best results with
λ = 0.5. However, the frequency-wise normalizations of
hidden layer activations seem to have a negative impact, which
can be seen by the large performance increase when using
the normalization on the input spectrogram only. We further
observe a slight performance gap between RFN and SFC
which we attribute to the layer normalization used in RFN.

A. Impact of λ

We further investigate the effect of relaxation by plotting
the performance on seen and unseen devices over different

Fig. 4. Performance of frequency-wise centering on seen and unseen record-
ing devices for different degrees of centering (λ = 0 means no centering.)

degrees of relaxation in Figure 4. Lower values of λ lead to
small improvements on the original and the unseen devices.
With even higher values for λ, the accuracy on unseen devices
increases even further and peaks at λ = 0.9. However, this
comes at the price of a decreased performance on the seen
devices, which drops significantly for λ > 0.5. This suggests
that λ needs to be fine-tuned based on the expected prior
probability of seen and unseen recording devices.

B. Centering of Hidden Representations

We also investigate the effect of hidden layer centering. To
this end, we retrained with two modifications: frequency-wise
centering in all hidden layers and frequency-wise centering
after the linear transformation from patches to tokens only. We
search for the best value of λ as above and report the results
in Table III. While we see an improvement on the unseen
devices over the baseline for all methods, normalizing only
the input spectrogram yields the highest improvements on the
unseen devices, which is in correspondence with our previous
analysis of the hidden layer activations.

C. Centering vs. Normalization

Our initial investigation into transformer activations indi-
cated that frequency-wise centering of the spectrogram might
be sufficient to remove device information. We validate our
decision by comparing our methods to a slight variation of
the proposed method that centers and whitens the spectrogram
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TABLE III
FIRST SECTION: EFFECT OF APPLYING THE CENTERING OPERATION ON

THE SPECTROGRAM, THE INPUT TOKENS, OR THE INTERMEDIATE
REPRESENTATIONS BETWEEN SELF-ATTENTION BLOCKS. SECOND

SECTION: IMPACT OF CENTERING AND WHITENING INSTEAD OF
CENTERING ONLY.

λ input first linear std all seen unsee

0.0 ✗ ✗ ✗ ✗ 47.66 82.22 43.35
0.9 ✓ ✗ ✗ ✗ 62.87 73.84 61.50
1.0 ✗ ✓ ✗ ✗ 57.29 69.70 55.83
0.4 ✓ ✓ ✓ ✗ 54.04 67.68 52.34

0.8 ✓ ✗ ✗ ✓ 61.30 73.33 59.80

frequency-wise. We grid search for the best choice of λ in
the same range as above and report the result in Table III.
Additional whitening of the spectrogram did not increase the
performance on seen and unseen devices; these results seem
to suggest that the whitening step is redundant.

D. Pre-training with Normalization

We further test whether pre-training the AST with nor-
malized spectrograms could further improve the results. To
this end, we repeat the pre-training procedure, but use SFC
(λ = 0.9) already during pre-training this time. The results
are reported in the last row of Table II. Although we still
observe a noticeable gain across all unseen recording devices,
the performance gain is not as large as without normalization
during pre-training. This finding is rather disappointing, but
we also notice that the performance on the seen device does
not degrade as significantly as without normalization during
pre-training. We hypothesize that a different choice for λ could
lead to better results, but have not run large-scale experiments
to pinpoint the optimal lambda value.

VI. CONCLUSION

The main goal of this study was to investigate frequency-
wise normalization strategies to encourage recording device
invariance in ASTs. Our initial investigation into their hidden
layer activations suggested that most of the recording device
information is transferred from the frequency dimension into
the token dimension after the first self-attention block. We
designed a frequency-wise centering operation for spectro-
grams to remove recording device characteristics at an early
stage, which greatly improved the target prediction accuracy
on unseen recording devices. A natural line of progression of
this work would be to look into self-supervised training meth-
ods that incorporate strategies for recording device invariant
learning during pre-training.
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