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Abstract—Traditional topic identification solutions from audio
rely on an automatic speech recognition system (ASR) to produce
transcripts used as input to a text-based model. These approaches
work well in high-resource scenarios, where there are sufficient
data to train both components of the pipeline. However, in low-
resource situations, the ASR system, even if available, produces
low-quality transcripts, leading to a bad text-based classifier.
Moreover, spontaneous speech containing hesitations can further
degrade the performance of the ASR model. In this paper, we
investigate alternatives to the standard text-only solutions by
comparing audio-only and hybrid techniques of jointly utilising
text and audio features. The models evaluated on spontaneous
Finnish speech demonstrate that purely audio-based solutions are
a viable option when ASR components are not available, while
the hybrid multi-modal solutions achieve the best results.

Index Terms—topic identification, multi-modal, spontaneous
speech, linguistically-enhanced embeddings

I. INTRODUCTION

With the rapid increase of data generation and collection,
there is a need to organise it in a meaningful way for efficient
retrieval and analysis. One way to organise the data is by
automatically categorising documents based on their topic.
Categorising documents by topic is an active research area
and automatic topic identification (topic ID) is a positive step
forward in that direction. Topic ID is also beneficial in enhanc-
ing the human-computer interaction devices by improving their
efficiency [1]. Having such topic ID systems for high-resource
languages can be taken for granted, whereas for languages with
scarce resources, those systems might not be available. This
lack of resources has shifted the focus of research towards
alternative topic ID solutions.

To date, topic ID using text input is a well-explored area,
unlike audio, where only a few solutions exist. The text-based
approaches typically rely on distributed representations of
words or bag-of-words for extracting meaningful information
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[2], [3]. However, such techniques are not directly applicable
to audio.

The existing research on topic ID from audio typically
explores a multi-model pipeline where an automatic speech
recognition (ASR) system generates transcripts, and a separate
classifier identifies the topics from the transcripts. One such
pipeline system was explored in [4], where the authors ex-
tracted features from word-based ASR lattices and used them
together with a novel minimum classification error technique.
The authors in [5], on the other hand, focused on exploring
different techniques for selecting which recognition lattices are
most useful for topic ID. In [6], the authors explored a different
direction by utilising the gender information. They employed
two gender-dependent acoustic models and a bi-gram language
model to generate transcripts for the various text-based topic
ID systems. Another study [7] utilised multiple text features.
In their experiments, the words and graphemes, generated by
HMM and CTC ASR systems, were used as two different
inputs to a CNN model, showcasing the effectiveness of the
multi-stream input. Although these pipeline systems for topic
ID work well, they nevertheless rely on a separate ASR system
to generate the transcripts.

Obtaining a satisfying performance with an ASR system,
however, is challenging due to the difficulties of collecting
enough data in low-resource or domain-specific scenarios.
Thus, some research performs topic ID directly from audio,
without relying on an ASR system. In [8], the authors ap-
plied an unsupervised approach of acoustic unit discovery
to generate features for training an SVM system. A similar
approach for acoustic unit discovery was explored in [9], in
comparison to a dynamic time-warping solution of unsuper-
vised term discovery. Other research [10] explored an end-
to-end approach for topic ID from audio. The acoustic unit
discovery techniques differ from the proposed solutions in this
study since we do not discover acoustic features but instead
rely on audio embeddings.

While previous research [e.g., 4-10] performs topic ID on ei-
ther text or audio, it is possible to combine those features. For
example, the authors in [11] combined audio and text features,
showcasing the benefits of both modalities. Another approach
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Fig. 1. Overview of the topic ID systems.

for combining audio and textual modalities was explored in
[12]. In their study, the authors presented a solution to learn
audio-linguistic embeddings, where the acoustic information is
modelled by reconstructing the spectrogram and the linguistic
information by learning to transcribe the audio. Generally,
by combining both audio and text features, a performance
improvement is expected at a cost of increased complexity
and computational time.

Inspired by the audio-linguistic embeddings [12], we exper-
imented with learning linguistically-enhanced audio embed-
dings by reconstructing the filter banks and aligning the audio
and text embedding vector spaces. This approach is different
from the audio-linguistic embeddings proposed in [12] since
instead of learning to transcribe the audio, we minimise the
distance between the audio and text vector spaces. In addition
to the audio and linguistic losses, we further include the topic
ID loss as part of the learning framework.

This work aims to investigate audio-only and hybrid tech-
niques of jointly using audio and text-based inputs for per-
forming topic ID from spontaneous Finnish speech and com-
pare them to the standard text-based solutions. The text-based
approaches include semi-supervised, manual transcript, and
pipeline systems. The first system uses the manually and
automatically (by ASR) transcribed portions of the data. The
second system utilises only the manually transcribed data.
The third one is a commonly-used pipeline technique for
doing topic ID on the ASR-generated transcripts. As audio-
only solutions, we experimented with three models. The first
one uses the audio features, whereas the second one is an
embedding transfer approach that learns audio embeddings,
enhanced with linguistic information. The last audio-only
model is a self-supervised Wav2vec2 [13] solution. To jointly

Fig. 2. Topic distribution in the LP dataset.

utilise both the audio and text information, we experimented
with two models. The first one simply concatenates the audio
and text embeddings, while the second one implements multi-
task training by simultaneously learning the ASR and topic ID
tasks. To the best of our knowledge, this multi-task approach
has not been explored for the topic ID task. The proposed
audio-only and hybrid techniques are evaluated and compared
against the standard text-only approaches on a colloquial
Finnish dataset, reflecting a real-world scenario. An overview
of the explored topic ID systems is given in Figure 1.

Contributions. In this paper, we present the effectiveness
of the proposed linguistically-enhanced audio embeddings,
outperforming the other audio-only solution. Furthermore, we
present a multi-task approach that jointly learns the ASR and
topic ID tasks as an alternative to the pipeline system.

II. DATASET

For conducting the experiments, we used the newly col-
lected Lahjoita puhetta (LP) [14] conversational Finnish cor-
pus. It is a diverse corpus with over 20.000 different speakers
covering different age groups and speaking colloquial Finnish.
The colloquial and spontaneous nature of the corpus allows us
to evaluate the models in a real-world scenario. The length of
the audio recordings varies significantly, from a few seconds to
several minutes. In our experiments, we used only the samples
which are up to 50 seconds long and discarded the rest. This
choice reduces the computational cost that long utterances
impose. The duration of the transcribed part of the dataset
used in this study for the train, dev, and test splits is 408, 3,
and 3 hours, respectively, whereas the untranscribed part is
405 hours (used exclusively for training). The 8 topics used
in the experiments are: ”Animal friends”, ”Sports moments”,
”My surroundings”, ”Summer”, ”The cursed Covid”, ”Media
skills”, ”Rated R”, and ”Nature”. In the original dataset, the
”Media skills” topic is divided into three categories, which we
merged into one. The topic distribution is given in Figure 2.

III. TOPIC IDENTIFICATION APPROACHES

All the explored approaches consist of one or multiple of the
following blocks: audio encoder, text encoder, and attention-
based decoder. The CRDNN audio encoder uses filter banks
with 40 filters as input and produces audio embeddings. The
text encoder extracts word embeddings using the uncased

397



FinBERT model [15]. The embeddings are averaged to get
an utterance-level representation. The GRU decoder is used in
cases where the model additionally performs the ASR task.
As a decoding strategy for the ASR, we used beam search
with a size of 10. During training, we optimised the negative
log-likelihood. In the experiments where additionally the ASR
decoder is trained, the CTC objective [16] is used as an
auxiliary loss for the first 20 epochs with a weighting factor
of 0.5. We used the SpeechBrain toolkit to conduct all the
experiments and the recipes are publicly available1.

We compare our proposed audio-only and hybrid solutions
to the baselines presented in [14]. The audio-only baseline
model (referred to as audio BL in the table) is a 5-layer TDNN,
followed by a statistics pooling and two linear layers. The
audio+text baseline (referred to as audio+text BL) additionally
utilises the text by extracting FinBERT embeddings and using
them as input to a BLSTM network. The predictions are made
by concatenating the audio and text embeddings.

A. Text-based approaches

Three different text-based models are used to compare the
performance against the audio-only and hybrid solutions. The
first one is trained on part of the data that have manually anno-
tated transcripts. We will refer to this model as text man trn.
The second model combines manually and automatically gen-
erated transcripts. The automatically generated transcripts for
the untranscribed portion of the data are obtained using a
separate ASR system. We will call this approach text semi-
supervised. The ASR system is trained with the standard
end-to-end sequence-to-sequence technique [17], where the
model outputs SentencePiece unigram subword units [18].
The WER and CER on the test set are 34.63% and 12.55%,
respectively. The reason for the high WER and CER might
be the agglutinative nature of the Finnish language, which
has long words. Furthermore, the colloquial Finnish does not
have a fixed written form, making it hard to transcribe even by
humans [14]. Lastly, we trained a text pipeline system where
all the transcripts are generated by the ASR model.

B. Audio-based approaches

The audio-based solutions rely on the audio encoder to ex-
tract meaningful acoustic embeddings. The audio-only system
embeds the utterances using the CRDNN encoder and uses
those embeddings for classification (see Figure 1a). Since we
do not rely on the transcripts, the whole audio data is used,
combining the transcribed and untranscribed parts.

As mentioned earlier, extracting meaningful information
from audio is more difficult than from text. To bridge the
gap between audio and text embeddings, we make use of
the audio and text data by learning linguistically-enhanced
audio embeddings. We do that by pre-training the embedding
transfer model using three objectives (see Figure 1c). The
linguistic information is modelled by minimising the L1 loss
between the audio and word embeddings. Due to the different

1https://github.com/aalto-speech/Topic-identification-for-spontaneous-
Finnish-speech

embedding dimensions, the audio embeddings are upscaled
using a feed-forward layer to match the dimension of the text
embeddings. To model the acoustic information, we minimise
the L1 loss between the audio embeddings and the original
filter bank features. The audio embeddings are downscaled
using a feed-forward layer to match the dimension of the filter
banks. This acoustic loss is used to get a system similar to
an audio autoencoder. We opted for that to ensure the model
preserves the acoustic information rather than solely adapting
to the text embeddings. When computing the L1 loss between
the different embeddings, we are using utterance-level rep-
resentations, obtained by averaging. Lastly, the negative log-
likelihood loss is used to learn the topic ID task from the audio
embeddings. During pre-training, the three objective functions
are interpolated with equal contribution. The negative log-
likelihood loss is defined as:

Lossnll = −
N∑
i=1

log(p(yi|ai; θ)) (1)

where, N is the number of samples, yi is the ground truth label
for the sample i, ai is the audio embedding for the sample i,
and θ are the model parameters. The acoustic and linguistic
L1 losses are defined as:

LossL1 =

N∑
i=1

|ai − ki| (2)

where k is either the filter bank features or the text embedding
for the sample i. After the model is pre-trained, a new model
is initialised using the pre-trained weights and trained on the
whole audio data in the same way as the audio-only system
(see Figure 1d). We put the embedding transfer approach under
the audio-based systems because during inference it uses only
the audio features.

The last audio-only solution is the pre-trained multilingual
Wav2vec2 2 model. We fine-tuned this model for 10 epochs on
a 100-hour subset of the Lahjoita puhetta corpus. The samples
were chosen so that they would reflect the class distribution
of the whole dataset. We did not use the whole dataset during
fine-tuning due to the computational time. Additionally, at
least in terms of WER, there are no big differences observed
when fine-tuning on a whole dataset, in comparison to a 10-
hour subset [19].

C. Hybrid audio and text-based approaches

The hybrid systems exploit the information from both the
audio and text modalities. The first solution employs a multi-
task approach where the ASR and topic ID tasks are learned
jointly using the transcribed portion of the data (see Figure 1e).
This way, the ASR part is optimised for the topic ID task and
vice-versa. In the process, hard parameter sharing is employed
[20], where the same audio encoder output is used in both
tasks. For the topic ID task, the embeddings produced from
the audio and text encoders are concatenated and passed to
the classification layer. To learn the ASR task, only the audio

2https://huggingface.co/facebook/Wav2vec2-xls-r-300m
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TABLE I
MICRO F1 AND UAR SCORES ON THE DEV AND TEST SETS FOR THE

TEXT-BASED (ROWS 1-3), AUDIO-BASED (ROWS 4-7), AND HYBRID (ROWS
8-10) MODELS.

Model Params F1 dev F1 test UAR dev UAR test

Text pipeline 7.7K 85.99 80.38 80.30 75.15
Text man trn 7.7K 87.22 83.97 81.40 78.86
Text semi-sup 7.7K 87.96 84.68 83.70 80.40

Audio BL 4.2M 68.28 65.65 58.34 58.34
Emb transfer 21.2M 75.67 76.31 69.32 72.56
Audio-only 20.8M 76.90 75.83 69.23 68.50
Wav2vec2 317M 78.62 71.77 70.37 67.29

Audio+text BL 15.8M 89.95 81.34 85.80 78.70
Audio+text 20.8M 86.48 85.64 81.69 79.80
Multi-task 25M 88.69 86.12 83.33 80.40

embeddings are used. During training, both loss functions are
interpolated with equal contribution. The epoch resulting in
the lowest WER of 35.11% is chosen as a starting point for
the fine-tuning step. In the fine-tuning process, in addition to
the transcribed portion, the untranscribed part is used by first
generating transcripts using the pre-trained model. The model
is fine-tuned only on the topic ID task by concatenating the
audio and text modalities, using the whole training data (see
Figure 1f). In the tables, we refer to this model as multi-task.

In the last experiment, only the transcribed portion of the
data is exploited. The topic ID task is learned by concatenating
the audio and text embeddings and using the output for
classification. This audio+text approach does not incorporate
any pre-training and is used to show whether utilising the
audio data along with the text is better than just the text.

IV. RESULTS AND DISCUSSION

To account for the imbalanced class distribution in the
Lahjoita puhetta dataset, the systems are evaluated using
the micro F1 and unweighted average recall (UAR) metrics.
The results obtained by the text-only, audio-only, and hybrid
models are presented in Table I.

In the first three rows of Table I, we can see the F1 and UAR
results for the text-based approaches. The text pipeline, which
is the most commonly used approach in the literature, achieves
an F1 score of 80.38% on the test set. Even though this model
uses the ASR-generated transcripts from the whole data, it
still falls behind the text man trn system, trained only on
the manually transcribed portion, highlighting the importance
of accurate transcriptions. The benefits of the additional non-
transcribed data are shown by the text semi-supervised model,
achieving the best performance of 84.68% F1 score on the test
set. A similar trend can be observed by looking at the UAR
metric, where the text semi-supervised model got 80.40%,
which is a 5.25% absolute improvement over the pipeline
system. The gap between UAR and F1 showcases that the
models somewhat overfitted to the over-represented topics, but
the overfit is not severe.

From the results produced by the audio-based approaches
(rows 4-7), we can notice that the embedding transfer model

slightly outperforms the audio-only model in terms of F1

score on the test set, while in terms of the UAR metric, the
difference is more substantial. On the dev set, the F1 score
of the audio-only model is better, but its UAR value is close
to the one yielded by the embedding transfer. Additionally,
both models outperformed the baseline system, showcasing
the benefits of the larger CRDNN model. Even though the
Wav2vec2 model is pre-trained on 436K hours of data and has
over 300 million parameters, it still falls behind the proposed
audio-only solutions when evaluated on the test set. On the
dev set, on the other hand, the Wav2vec2 model achieves the
best results, possibly due to overfitting.

Next, we analyse the results achieved by combining the
audio and text-based features, shown in rows 8-10. The au-
dio+text approach, which uses only the transcribed part of the
data, achieves an F1 score of 85.64% on the test set. This is a
1.67% absolute improvement over the text man trn model that
utilises only the manually-transcribed text features. Similarly,
an improvement can be noticed by looking at the UAR metric.
These results tell us that the model additionally benefits from
the audio-based features. An improvement over the audio+text
approach is realised by the multi-task system, which uses the
manually and automatically transcribed portions of the data.
In terms of WER, the multi-task system does not suffer too
much, performing only 0.48% worse than the stand-alone ASR
model. The baseline audio+text BL model achieved the best
F1 and UAR results on the dev set, but the worst on the test
set, indicating a severe overfit.

Generally, by looking at the results presented in Table I,
we can conclude that the audio-only approaches fall behind
the text-only ones. When combining audio and text-based
features, on the other hand, we can see an improvement over
the commonly-used pipeline approach. The best results for
the F1 metric are realised by the multi-task system, whereas
for the UAR, both multi-task and text semi-supervised achieve
equal scores. Another point worth noting is that the text-based
approaches tend to perform better on the dev than on the test
set when evaluated using the F1 metric, indicating that they
might be overfitting. Meanwhile, the models that additionally
use the audio features tend to perform similarly on the dev
and test sets, suggesting that the audio modality serves as a
regularizer for the models.

TABLE II
MODEL AGREEMENT IN TERMS OF MICRO F1 ON THE TEST SET.

Audio-only Emb trnf Text semi-sup

Multi-task 73.20 76.55 85.40
Audio-only / 72.24 72.72
Emb trnf / / 75.59

By using the input modalities in different ways, we expect
that the systems would recognise the same examples with
varying difficulties. To investigate how much the models agree
with each other, we treated one model’s predictions as true
labels and compared them against the predictions of the other
models. The model agreements are given in Table II. These
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Fig. 3. Embeddings produced for the test set by the audio-only, text-only,
and embedding transfer systems.

results demonstrate that the embedding transfer solution has a
higher agreement with the multi-task and text semi-supervised
approaches, in comparison to the audio-only, showcasing the
effectiveness of modelling the linguistic information. This is
further confirmed by plotting the embeddings for audio-only,
text-only, and embedding transfer systems, as shown in Figure
3. The embeddings are mapped in a 2D space using the t-SNE
algorithm [21]. From the scatter plot, we can observe that
the embedding transfer samples (green) are mostly following
the distribution of the audio samples (orange), while still
gaining some linguistic insights, showing that the embedding
transfer approach is capable of capturing audio and linguistic
information.

V. CONCLUSIONS

In this paper, we experimented with text-only, audio-only,
and hybrid approaches for topic ID on spontaneous Finnish
speech. The experiments showed that the solutions using
only audio features fall slightly behind the standard pipeline
approach, but are still a viable option when the ASR system is
not available. The popular Wav2vec2 model falls behind the
other audio-only solutions, indicating that for the colloquial
Finnish language, custom solutions trained from scratch are
a better option. The embedding transfer system, proposed in
this study, was able to effectively model the audio-linguistic
information, outperforming the other audio-only solutions. By
combining audio and text-based modalities, we observed a
significant improvement over the pipeline system and a slight
improvement over the other text-based solutions. The best
results are realised using the multi-task approach of jointly
learning the ASR and topic ID tasks. In the future, we plan to
apply the experiments to the English language. Additionally,
we plan to replace the filter banks with features extracted from
a pre-trained self-supervised model.
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