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Abstract— Diagnosing depression has become a major 

concern in the last years that led the research community to try 

innovative and creative ways of recognizing it. This paper 

proposes a system that can identify depression from speech 

samples based on a classification process performed by deep 

neural networks. The system was tested on the Distress Analysis 

Interview Corpus of human and computer interviews (DAIC-

WOZ) and the Multi-modal Open Dataset for Mental-disorder 

Analysis (MODMA), two spontaneous speech databases 

recorded in realistic conditions and in two different languages. 

The system is able to generalize well on previously unseen data.  

Improvements have been obtained over other results reported 

in literature, yielding an unweighted accuracy (UA) of 91.25% 

and a weighted accuracy (WA) of 92.10% for DAIC-WOZ. 

Keywords—depression detection, speech technology, deep 

neural networks, DAIC-WOZ, MODMA 

I. INTRODUCTION 

Clinical depression is a psychological disorder caused by 
difficulty coping with stressful life events, manifested by 
persistent feelings of sadness and negativity, low self-esteem, 
loss of interest or satisfaction. For people with severe 
symptoms, the risk of suicide may increase. In recent years, 
the number of reported cases of depression has grown 
significantly and represents a major cause of concern for the 
World Health Organization [1]. 

In the process of diagnosing depression, traditional 
assessment tools are used (e.g., the Beck Depression 
Inventory and the Patient Health Questionnaire depression 
scale, PHQ-8), which are based on the patients’ perception of 
their own symptoms that they identify or are aware of, and on 
the experience of the clinicians who examine them. 
Consequently, the diagnostic process is subjective and 
requires time and practice to produce a reliable result [2]. 
Given this aspect, there is great interest among researchers in 
the fields of psychology, medicine, and computer science for 
automatic depression recognition [3].  

So far, the best results have been achieved by combining 

multiple techniques and using machine learning methods. 

Researchers have used various techniques to analyze speech 

patterns, including acoustic and prosodic analysis or natural 

language processing. Acoustic analysis has been employed to 

extract features such as the fundamental frequency and the 

intensity, which have been found to be related to depression 

[4]. Prosodic analysis has been leveraged to study the rhythm 

and intonation of speech, which can provide insight into the 

emotional state of an individual [5]. Natural language 

processing has also been used to analyze the content of speech, 

such as lexical aspects and the topics discussed; depressed 

individuals tend to favor specific words and discuss certain 

topics more frequently [6]. Among the best machine learning 

models that have been reported in recent studies for depression 

detection from speech are Support Vector Machines (SVMs), 

Random Forests (RFs) [3, 7], Deep Neural Networks (DNNs) 

[6], and Convolutional Neural Networks (CNNs) [8-10]. 

Previous research has emphasized the existence of speech 
characteristics correlated with depression (e.g., reduced 
speech rate, pitch differences, increased duration of pauses, 
reduced tonal variation). Additionally, the acquisition of 
speech signals can be done remotely, without intrusion, and is 
relatively inexpensive. Identifying depression using speech is 
a simpler approach compared to alternative methods such as 
analyzing facial expressions, body language, brain activity, 
etc. Our proposed system uses features extracted from speech 
to train a deep learning model that would be able to assist 
specialists in faster, more accurate, and objective detection of 
depression symptoms and, consequently, in the selection of 
better and more effective treatments for potential patients. 
There are many challenges in creating a robust deep learning 
model and one of them is the lack of large, diverse datasets 
that include speech samples from individuals with depression, 
making it difficult to train accurate models. Recognizing 
depression from speech also raises important privacy and 
ethical concerns in terms of data security and informed 
consent and, because of this, most institutions are not able to 
obtain sufficient samples. Additionally, data annotation is 
based on the annotators’ perception and is not fully accurate 
or objective, and the distribution of depression scores will 
affect the performance of the constructed model. 

The main contributions of this work include: 

• the development of a system for depression detection 
from speech using deep neural networks and 
algorithmically extracted features; and 

• validating its high performance on two benchmark 
datasets that include speakers of two different 
languages (English and Chinese). 

The rest of the paper is organized as follows: section II 
describes the proposed system architecture; section III 
provides methodological details for the experimental setup, as 
well as the achieved results and their interpretation; 
conclusions and future work are outlined in section IV. 

II. SYSTEM ARCHITECTURE 

The proposed system for identifying depression from 
speech consists of a deep neural network that receives as input 
a large collection of descriptors obtained by using statistical 
functions on algorithmically extracted (also referred to as 
hand-crafted) acoustic, prosodic, spectral, and cepstral 
features. The system’s final output is a binary classification 
that assigns the samples used in the training and testing phases 
to one of two classes: depressed or non-depressed. The 
proposed system diagram is illustrated in Fig. 1. 
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Fig. 1. The general diagram of the proposed system that solves a binary 

classification task to identify the class to which speech samples belong: 

depressed or non-depressed. 

The pre-processing stage consists of resampling the audio 
recordings from the databases at 16 kHz and converting them 
to a mono PCM format. Additionally, the amplitude was 
normalized to the standard [−1, 1] range, the silent time 
intervals were removed, and a median filter was applied to 
reduce noise. The audio recordings were also divided into 
25 ms frames with a 15 ms overlap using a Hamming window. 

After pre-processing, several sets of features and their 
statistical measures (mean and standard deviation) were 
extracted for each audio recording. The first set, labeled 
‘MFCC’, contains cepstral descriptors (the first 13 
Mel-frequency cepstral coefficients and their delta and delta-
delta coefficients) as they are among the most popular features 
used successfully in many speech processing tasks. The 
‘MBF’ set comprises features obtained from the analysis of 
the instantaneous amplitude and frequency of speech signals 
considered as series of AM-FM micro-modulations. Another 
important set of features, ‘APF’, concerns acoustic and 
prosodic descriptors (loudness, rms energy, zero-crossing 
rate, pitch, jitter, shimmer, harmonic to noise ratio). The last 
set, ‘SPF’, includes a large number of spectral descriptors 
(spectral centroids, spectral flux, spectral spread, spectral 
skewness, spectral kurtosis, spectral slope, spectral entropy, 
spectral roll-off points, the low-frequency band energy, the 
high-frequency band energy, and the log-filterbank energies). 
A complete description of these features and the extraction 
process can be found in our previous work [11, 12]. 

Another aspect that required attention was the imbalance 
between the classes of the two databases, i.e., the existence of 
a significant difference between the number of observations 
belonging to each class (especially for the DAIC-WOZ 
database). The DAIC-WOZ dataset includes 43 depressed vs. 
99 non-depressed speakers, while MODMA includes 22 
depressed vs. 30 non-depressed speakers. The presence of 
class imbalance has important consequences for the learning 
process, typically producing classifiers that have poor 
predictive accuracy for the minority class and that tend to 
classify new samples as belonging to the majority class [13]. 
To overcome this problem, we applied SMOTE (Synthetic 
Minority Oversampling Technique) analysis to the features, 
an oversampling technique that generates synthetic samples 
from the minority class. Specifically, this involved duplicating 
samples from the minority class, despite these not adding new 
information to the model. The alternative, class weighting, did 
not produce improved results in preliminary experiments. 

The last step in preparing the input data was applying 
z-score normalization to each descriptor, standardizing their 
distributions to achieve zero-mean and unity variance. The 
actual detection task is performed by the classifier, consisting 
of either a Multilayer Perceptron (MLP) model or a 
Convolutional Neural Network using one-dimensional filters 
(1D-CNN). As can be seen in Fig. 2, the MLP classifier uses 

Nh hidden layers with Nn neurons for each, and an output layer 
whose size is either equal to one (direct binary classification 
using the ‘sigmoid’ activation function) or is equal to the 
number of classes, i.e., two (indirect binary classification 
using the ‘softmax’ activation function). The 1D-CNN model 
is more complex and is presented in Fig. 3. The core structure 
is made up of three layers: 1D convolutional, followed by 1D 
max-pooling and batch normalization. This structure is then 
repeated Nlayers times, the classifier having a total number of 
Nlayers + 1 convolutional layers. The output from the final 
block is then flattened and fed to a fully-connected layer (with 
the same configuration as in the case of the MLP model), with 
dropout being added to combat overfitting. 

III. EXPERIMENTAL SETUP AND RESULTS 

The experiments were implemented in Python using the 
Keras framework. Training and testing were done on a 
workstation with an Intel Xeon W-1290P CPU, 128 GB of 
RAM, and an Nvidia RTX A4000 GPU. 

A. Datasets 

For the considered task, the only publicly accessible 
databases recorded in realistic conditions were DAIC-WOZ, 
the most often cited corpus, and MODMA, a new, promising 
dataset, released in 2020, that so far has not been used 
extensively by other researchers. 

1. DAIC-WOZ 

The DAIC-WOZ (Distress Analysis Interview Corpus of 
human and computer interviews) database [14-15] was 
designed to simulate the standard protocols for identifying 
people at risk for post-traumatic stress disorder (PTSD) and 
major depression. This comprises the Wizard of Oz (WOZ) 
interviews that were conducted with the help of an animated 
virtual character named Ellie, who asked questions while 
being controlled by a human investigator from another room. 

A total of 189 recordings are available, with durations 
between 5-10 min, which have been standardly split into 107 
for the train set, 35 for the validation set and 47 for the test set. 
The participants (87 female, 102 male) were all fluent English 
speakers. For the train and validation sets, information 
regarding some PHQ8 scores (No interest, Depressed, Sleep, 
Tired, Appetite, Failure, Concentrating, Moving) was 
provided. The higher these scores, the more likely to 
encounter a depressed person. In the test sets, only the gender 
information of the interviewees is given, but the label on their 
depressive status is not provided. As a result, only 142 
recordings from the total available could be used, namely 
those from the training and validation sets. 

 

Fig. 2. The structure of the MLP model used to classify the input data as 

coming from a depressed or a non-depressed person. 
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Fig. 3. Detailed overview of the 1D-CNN architecture containing the input layer, one or more groups of convolutional layers, pooling layers, and batch 

normalization layers, the flattening layer, one fully-connected layer with dropout, and the output layer (comprising fully-connected neurons). The input layer 

receives the feature vectors extracted from the speech signal. The convolutional layers apply 1D filters to the data, producing sets of feature maps. The pooling 
layers then perform down-sampling on the feature maps, reducing their spatial dimensions and increasing their invariance to small translations. The flattening 

layer converts the final multi-dimensional feature maps into a 1D vector. Lastly, the fully-connected layers output a prediction based on the learned features. 

2. MODMA 

The MODMA (Multi-modal Open Dataset for Mental-
disorder Analysis) dataset [16] includes EEG data and speech 
recordings from clinically depressed patients and from a 
control group. To ensure the reliability of the data concerning 
depression, the patients were diagnosed and recommended by 
at least one clinical psychiatrist, with the score of the Patient 
Health Questionnaire (PHQ-9) being greater than or equal to 
5, and the Mini-International Neuropsychiatric Interview 
(MINI) reaching the criteria for depression. 

Audio recordings of 52 Chinese speakers were created 
during interviewing, reading, and picture description. The 
subjects were 22 patients (11 female, 11 male) diagnosed with 
depression and 30 healthy controls (9 female, 21 male). For 
every participant there are 29 different audio files distributed 
as follows: 1-18 are interviews, 19 is text reading, 20-25 are 
vocabulary reading, 26-28 are picture description, and 29 is a 
thematic apperception test. Each file has a duration of 
approximately 10 s. In our experiments, only the interview 
recordings were considered, as they are more relevant. 

B. Setup and details 

The MLP classifier consists of fully-connected or dense 
layers. Several configurations for the hyperparameters were 
tested: the number of hidden layers (between 1 and 4), the 
number of neurons per each hidden layer (32, 64, 128, 256, 
512, and 1024), the number of neurons in the output layer (a 
single neuron, using the ‘binary cross-entropy’ loss function, 
or 2 neurons, using the ‘categorical cross-entropy’ loss 
function), the activation function for the neurons in the hidden 
layers (‘tanh’, ‘sigmoid’, and ‘relu’), using different dropout 
rates (none, 10%, 20%, 30%, 40%, and 50%), the optimization 
algorithm (‘sgd’, ‘rmsprop’, ‘adagrad’, ‘adadelta’, and 
‘adam’), and the rate used for L1 regularization (0.1, 0.01, and 
0.001). 

The 1D-CNN model has 2, 3, or 4 (Nlayers + 1) groups of 
1D convolutional layers, 1D max-pooling layers, and batch 

normalization layers. Max-pooling was used to reduce the 
spatial dimensions of the feature maps produced by the 
convolutional layers, which helps to decrease the 
computational cost of the network. Batch normalization was 
included to help stabilize the distribution of the activations 
across different layers in the network. The hyperparameters 
chosen include: the number of filters (32 and 64), the kernel 
size (1 and 3), the pooling size (none and 2), and the number 
of neurons in the final fully-connected layer (20, 32, 64, 128, 
256, 512, and 1024). Additionally, the same optimization 
algorithms, activation functions, dropout rates, and output 
layer configurations were tested as for the MLP model. 

To establish the robustness and performance of the tested 
models as objectively as possible, the input data was divided 
into training (60%), validation (20%), and testing (20%) sets, 
while also ensuring the same proportional distribution over 
genders and classes. Furthermore, 10-fold cross-validation 
was employed to make sure the splitting is unbiased, and the 
performance metrics for each fold were calculated and then 
averaged, obtaining the final experiment-level values. 

The metrics used were: unweighted accuracy (UA), 
weighted accuracy (WA), precision (P), recall (R), and the 
F1-measure. For both types of classifiers, training was done 
using a batch size of 32, over 100 epochs and employing the 
early stopping technique by monitoring the validation error 
with a latency of 3 epochs. 

C. Results and discussions 

As can be seen in Table I and Table II, the cepstral 
(‘MFCC’) and the modulation-based feature sets (‘MBF’) 
proved to be the most effective, in contrast to the acoustic, 
prosodic, and spectral ones (‘APF’, ‘SPF’). From the same 
tables, we can observe that the proposed models are robust 
and achieve similar results on the two databases, despite the 
fact that the audio recordings come from speakers of different 
languages (English and Chinese), which suggests that the 
models exhibit language independence. 
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TABLE I.  PERFORMANCE METRICS VS. FEATURE SETS OBTAINED FOR 

THE DAIC-WOZ AND MODMA DATASETS USING THE MLP CLASSIFIER  

MLP classifier 

Database Feature set Hyperparameters 

UA / 

WA 

[%] 

DAIC-

WOZ 

‘MFCC’ 

- hidden layers: 2 

- neurons per hidden layer: 1024 
- neurons in the output layer: 1 

- activation function: ‘relu’ 

- dropout rate: none 
- optimizer: ‘adam’ 

86.25 

/ 
70.59 

‘APF’ 

- hidden layers: 3 

- neurons per hidden layer: 256 

- neurons in the output layer: 2 
- activation function: ‘relu’ 

- dropout rate: 20% 

- optimizer: ‘rmsprop’ 

75.73 

/ 

87.33 

‘MBF’ 

- hidden layers: 2 

- neurons per hidden layer: 512 

- neurons in the output layer: 1 

- activation function: ‘relu’ 
- dropout rate: none 

- optimizer: ‘adam’ 

80.99 
/ 

87.81 

‘SPF’ 

- hidden layers: 2 

- neurons per hidden layer: 512 

- neurons in the output layer: 1 
- activation function: ‘relu’ 

- dropout rate: 20% 
- optimizer: ‘rmsprop’ 

64.3 / 
92.8 

MODMA 

‘MFCC’ 

- hidden layers: 2 
- neurons per hidden layer: 1024 

- neurons in the output layer: 1 

- activation function: ‘relu’ 
- dropout rate: none 

- optimizer: ‘rmsprop’ 

78.33 
/ 

80.24 

‘APF’ 

- hidden layers: 4 

- neurons per hidden layer: 256 
- neurons in the output layer: 2 

- activation function: ‘relu’ 

- dropout rate: 10% 
- optimizer: ‘adam’ 

66.07 

/ 
78.70 

‘MBF’ 

- hidden layers: 2 

- neurons per hidden layer: 1024 

- neurons in the output layer: 2 
- activation function: ‘relu’ 

- dropout rate: 10% 

- optimizer: ‘rmsprop’ 

77.22 

/ 

81.79 

‘SPF’ 

- hidden layers: 2 

- neurons per hidden layer: 64 
- neurons in the output layer: 1 

- activation function: ‘relu’ 
- dropout rate: 10% 

- optimizer: ‘adam’ 

61.01 

/ 
90.39 

The best results for both datasets and both classifiers are 
summarized in Table III. The highest unweighted accuracy 
(UA) was achieved by the 1D-CNN model using the cepstral 
feature set, with slightly better results for the DAIC-WOZ 
database. The model used 4 convolutional layers with 64 
filters, kernel size of 1, pooling size of 1 (i.e., no pooling), 
1024 neurons for the fully-connected (FC) layer, a single 
neuron for the output layer, the ‘adam’ optimizer, the ‘relu’ 
activation function, and a dropout rate of 40%. Overall, for the 
DAIC-WOZ database, both classifiers performed well, with 
the 1D-CNN classifier having slightly better performance 
(91.25% vs. 83.2% F1-score). For the MODMA database, the 
1D-CNN classifier again performed better than the MLP 
classifier (79.45% vs. 75.4% F1-score). 

TABLE II.  PERFORMANCE METRICS VS. FEATURE SETS OBTAINED FOR 

THE DAIC-WOZ AND MODMA DATASETS USING THE 1D-CNN CLASSIFIER  

1D-CNN classifier 

Database Feature set Hyperparameters 

UA / 

WA 

[%] 

DAIC-

WOZ 

‘MFCC’ 

- convolutional layers: 4 

- filters: 64 
- kernel size: 1 

- pooling size: 1 (no pooling) 

- neurons in FC layer: 1024 
- neurons in the output layer: 1 

- dropout rate: 40% 

- optimizer: ‘adam’ 

91.25 
/ 

92.10 

‘APF’ 

- convolutional layers: 3 

- filters: 64 

- kernel size: 1 
- pooling size: 1 (no pooling) 

- neurons in FC layer: 256 

- neurons in the output layer: 2 
- dropout rate: 30% 

- optimizer: ‘sgd’ 

81.57 

/ 
86.23 

‘MBF’ 

- convolutional layers: 4 

- filters: 128 
- kernel size: 1 

- pooling size: 1 (no pooling) 

- neurons in FC layer: 20 
- neurons in the output layer: 1 

- dropout rate: 20% 

- optimizer: ‘adam’ 

83.26 
/ 

91.91 

‘SPF’ 

- convolutional layers: 4 

- filters: 32 

- kernel size: 1 
- pooling size: 1 (no pooling) 

- neurons in FC layer: 64 

- neurons in the output layer: 2 
- dropout rate: 30% 

- optimizer: ‘sgd’ 

78.07 

/ 
81.27 

MODMA 

‘MFCC’ 

- convolutional layers: 3 
- filters: 32 

- kernel size: 1 

- pooling size: 1 (no pooling) 
- neurons in FC layer: 512 

- neurons in the output layer: 1 

- dropout rate: 30% 
- optimizer: ‘rmsprop’ 

79.16 

/ 

92.53 

‘APF’ 

- convolutional layers: 2 

- filters: 32 

- kernel size: 1 
- pooling size: 1 (no pooling) 

- neurons in FC layer: 20 

- neurons in the output layer: 1 
- dropout rate: 10% 

- optimizer: ‘sgd’ 

66.36 

/ 
81.36 

‘MBF’ 

- convolutional layers: 4 
- filters: 64 

- kernel size: 1 

- pooling size: 1 (no pooling) 
- neurons in FC layer: 256 

- neurons in the output layer: 2 

- dropout rate: 40% 
- optimizer: ‘adam’ 

84.16 

/ 

86.74 

‘SPF’ 

- convolutional layers: 2 

- filters: 32 

- kernel size: 1 
- pooling size: 1 (no pooling) 

- neurons in FC layer: 20 
- neurons in the output layer: 1 

- dropout rate: 10% 

- optimizer: ‘adam’ 

54.16 
/ 

94.38 

Table IV compares the performance metrics of our 
proposed model to those of other systems reported recently in 
literature. For the DAIC-WOZ database, the proposed 
1D-CNN model outperforms other CNN models, with our 
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TABLE III.  DETAILED RESULTS CONCERNING THE BEST PERFORMANCE METRICS OBTAINED FOR THE DAIC-WOZ AND MODMA DATASETS. 

 MLP classifier 1D-CNN classifier 

Database 
Feature 

set 
Class 

Performance 

Class 

Performance 

P 

[%] 

R 

[%] 

F1 

[%] 

UA / 

WA 

[%] 

P 

[%] 

R 

[%] 

F1 

[%] 

UA / 

WA 

[%] 

DAIC-

WOZ 
‘MFCC’ 

depressed 

non-depressed 
Avg. 

70.0 

94.0 
82.0 

87.5 

85.0 
86.3 

77.0 

89.4 
83.2 

86.25 

/ 

70.59 

depressed 

non-depressed 
Avg. 

87.5 

95.0 
91.3 

87.5 

95.0 
91.3 

87.5 

95.0 
91.3 

91.25 

/ 

92.10 

MODMA 

‘MFCC’ 

depressed 

non-depressed 

Avg. 

74.0 

80.0 

77.0 

76.0 

77.0 

76.5 

75.0 

82.1 

78.6 

77.22 

/ 

81.79 

depressed 

non-depressed 

Avg. 

86.9 

76.7 

81.8 

66.0 

91.6 

78.8 

75.4 

83.5 

79.5 

79.16 

/ 

92.53 

‘MBF’ 

depressed 

non-depressed 

Avg. 

88.0 

82.5 

85.3 

76.0 

91.6 

83.8 

82.1 

86.0 

84.1 

84.16 

/ 

86.74 

depressed 

non-depressed 

Avg. 

88.0 

82.5 

85.3 

76.0 

91.6 

83.8 

82.0 

86.0 

84.0 

84.16 

/ 

71.24 

TABLE IV.  PERFORMANCE COMPARISON BETWEEN THE BEST RESULTS 

ACHIEVED IN THIS WORK AND OTHER LITERATURE. 

Database 
Proposed 

model 

UA / WA 

[%] 

Other 

works 

WA 

[%] 

DAIC-

WOZ 
1D-CNN 91.25 / 92.10 

[8] 85.0 

[9] 71.0 

[10] 82.9 

MODMA 
MLP 84.16 / 86.74 

[3] 83.4 
1D-CNN 84.16 / 71.24 

 

system achieving a weighted accuracy (WA) of 92.10%, the 

largest reported so far (to the best of our knowledge). For the 

MODMA database, the proposed MLP model performed the 

best, with the WA reaching 86.74%, surpassing other models 

based on decision trees (DT) [3] that only achieved a WA of 

83.4%. 

IV. CONCLUSION AND FUTURE WORK 

In this paper, we proposed and implemented a system for 
detecting depression from speech samples based on MLP and 
1D-CNN deep learning models. The system was successfully 
tested on the DAIC-WOZ and MODMA databases, achieving 
significantly better results compared to other works recently 
reported in literature. Testing on datasets comprising 
recordings from speakers of two different languages achieved 
similar results, indicating robustness and good generalization 
capability for the system. The 1D-CNN classifier reached an 
unweighted accuracy (UA) of 91.25% and a weighted 
accuracy (WA) of 92.1% on the DAIC-WOZ dataset. The 
MLP classifier on the MODMA dataset achieved a WA of 
86.74% and a UA of 84.16%. The results suggest a huge 
potential for a speech-based depression screening tool that 
could be used to assist healthcare professionals in the 
diagnosing and monitoring of patients, and to provide a 
scalable depression screening method enabling individuals to 
recognize their illnesses and seek professional help.  

Our future work will focus on leveraging other types of 

features and exploring cross-lingual transfer learning, where 

knowledge learned from one language can be used to improve 

performance in another language. 
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