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Abstract—Speech representation learning with self-supervised
algorithms has resulted in notable performance boosts in many
downstream tasks. Recent work combined self-supervised learn-
ing (SSL) and visually grounded speech (VGS) processing mech-
anisms for representation learning. The joint training with SSL
and VGS mechanisms provides the opportunity to utilize both
unlabeled speech and speech-related visual information based
on data availability. This has shown to enhance the quality of
learned representations, especially at encoding semantic- and
lexical-level knowledge. In this work, we further study the joint
optimization of wav2vec 2.0-based SSL and transformer-based
VGS as a multi-task learning system. We explore a set of training
scenarios to understand how speech representations are shared
or transferred between the two tasks, and what is the optimal
training strategy for cross-modal semantic retrieval and phoneme
discrimination performance. As a result, we find that sequential
training with wav2vec 2.0 first and VGS next provides higher
performance on audio-visual retrieval compared to simultaneous
optimization of both learning mechanisms. However, the parallel
SSL-VGS training reduces the effects of catastrophic forgetting
when switching between optimization criteria. Moreover, the
results suggest that phonemic representations learned through the
VGS mechanism may generalize better across datasets compared
to those learned with SSL.

Index Terms—speech representation learning, visually
grounded speech, multi-task learning, multi-modal neural
networks

I. INTRODUCTION AND RELATED WORKS

Visually grounded speech (VGS) processing refers to algo-
rithms that learn correspondences between image and speech
data in an unsupervised manner (see [1] for a review). VGS
models are central to the study of autonomous AI systems
that could ground their world knowledge to multimodal as-
sociations. In addition, they are commonly used to model
human infant language learning [2]. The data for training
a VGS model comes in the form of images paired with
spoken descriptions of the images. In a typical VGS system,
speech and image data are processed in parallel neural modules
and then mapped together into a shared embedding space,
where a similarity score -based contrastive optimization is used
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for network training (see, e.g., [3]). The system is usually
evaluated for its performance on speech-to-image and image-
to-speech retrieval tasks (see [1]).

Previous research has shown that hidden layers of trained
VGS models reflect linguistic information at, e.g., phonemic
and lexical levels, showing that the models can be used for
(multimodal) speech representation learning [2], [4]–[6] . This
is similar to unimodal algorithms for self-supervised learning
(SSL), such as wav2vec 2.0 [7], HuBERT [8], and CPC
[9], that learn useful speech representations using acoustic
speech input as the only data. Similar to large-scale language
models (e.g., BERT [10]), the speech representations learned
through self-supervised models have shown notable perfor-
mance boosts in many supervised downstream tasks, such as
phoneme or emotion recognition [7], [11], [12], thereby having
potential especially in low-resource speech tasks.

Recently, Peng and Harwath [13], [14] introduced a system
that jointly learns speech representations using acoustic-level
self-supervised learning and semantic-level visual grounding.
The use of two learning mechanisms provides a potential
advantage over the individual mechanisms: the system can
process a combination of speech-only (unlabeled) data through
a SSL block and (weakly labeled) speech-image pairs through
a VGS block according to data availability in the two cases.
This enables potentially synergetic and flexible learning of
speech representations from the two previously established
representation learning mechanisms, as several layers of the
speech encoder module are shared between the SSL and VGS
networks. Using this model, Peng and Harwath [13] showed
that the joint model performs competitively on phonemic task
of ZeroSpeech 2021 challenge [15] and SUPERB benchmark
[12] while also outperforming many models at semantic and
lexical tasks.

The joint VGS and SSL training, as in [13] and [14], can
be seen as a multi-task multi-domain system with the capacity
for both incremental and simultaneous learning. While catas-
trophic forgetting is a main challenge in domain-incremental
learning, the major problem with the task-incremental learning
is to obtain the knowledge that can be transferred across tasks
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[16]. However, the potential synergies of a shared encoder
for SSL and VGS tasks were not comprehensively studied
in the earlier works ( [13], [14]). In addition, most of the
experiments by Peng and Harwath used an additional corpus
(LibriSpeech [17]) for SSL learning or pre-trained weight
initialization, making it difficult to disentangle benefits of
mechanism synergies per se from potential benefits of simply
having more (and more varied) training data for the SSL.
Thereby, it remains unclear in what conditions joint SSL and
VGS training facilitates the learning process (e.g., in terms
of final representation quality, learning rate, or cross-corpus
generalization) compared to what is obtained by the individual
mechanisms, and whether benefits of joint training also occur
in a case where only the same audio data is available to both
learning mechanisms. Also, if the joint training provides learn-
ing improvements, what would be the best way to schedule
learning with the SSL and VGS mechanisms (e.g., parallel or
sequential optimization)?

In this work we try to answer the above questions by
investigating a set of combined SSL and VGS training sce-
narios using the system from [13] for speech-to-image se-
mantic mapping and self-supervised acoustic modeling. We
study how temporal sequencing of the learning mechanisms
affects phonemic and audiovisual semantic learning when both
mechanisms have access to the same audio data.

II. MODEL DESCRIPTION

We adopted the FaST-VGS+ model from [13] with a
simplification of using only the ”coarse” audio-visual loss
of the model for computational feasibility (i.e., the ”Fast”
transformer version; see [18] for more details). The model
(Fig. 1) consists of two main mechanisms for speech-image
training (a transformer-based VGS model [18]) and speech
SSL training (masking-based speech acoustic modeling with
wav2vec 2.0; [7]). Most of the speech encoder is shared
between the VGS and SSL mechanisms and optimized for
the both tasks (Fig. 1, green block).

In the VGS pipeline, the image and speech inputs are
processed in parallel branches where the classification (CLS)
tokens of the last transformer layers are used as ”seman-
tic” speech and image embeddings. These embeddings are
compared using cosine similarity score and optimized for
similarity (dissimilarity) in case of matching (mismatching)
speech-image pairs. The speech-based SSL uses wav2vec 2.0
(from now on: W2V2) network that randomly masks segments
of input speech and learns speech representations by predicting
the masked sections from other parts of the same utterance.

The audio waveform encoder shared by SSL and VGS is a 6-
layer convolutional neural network (CNN) that maps the input
acoustic waveform (in 16 KHz) to embedding of 512-d (cal-
culated every 10 ms). It is followed by an 8-layer transformer
block (”speech encoder” in Fig. 1) shared between the two
VGS and W2V2 networks, and 4 additional transformer layers
dedicated to W2V2 only (”speech decoder”). ResDAVEnet
[19] is stack of convolutional and pooling layers applying the
down-sampling in time, and the image encoder is a 6-layer

transformer block. The dimension of all transformer layers
is 768. The VGS network is trained through a masked and
marginalized ”InfoNCE” loss [20] (here denoted as lossAV )
as a contrastive learning method that tries to minimize the
distance between ground-truth speech-image pairs compared
to a set of disctractor random pairs taken from the same
training mini-batch. In W2V2, a contrastive masking loss tries
to minimize the distance between the masked speech represen-
tations and their ground-truth quantized versions compared to
a set of distractors coming from the same utterance. Moreover,
a diversity loss is used to encourage the equal use of codebook
entries at quantization block.

Following the original work [7], we combined the two
masking (lossAUD,R) and diversity (lossAUD,D) losses in pro-
portion of 1:0.1, denoting their sum as lossAUD. The VGS+
model is trained by combining the lossAV and lossAUD with
a coefficient α that controls the emphasis on the two training
mechanisms as

loss = αlossAV + (1− α)lossAUD. (1)

By varying α at training time, we could manipulate the
contribution (and timing) of the auditory and audiovisual
learning mechanisms in the overall system training.
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Fig. 1. VGS+ as a joint model of VGS and SSL training. The green block
is optimized for the both tasks.

III. EXPERIMENTS

The aim of the experiments was to understand how the SSL
and VGS mechanisms interact in different training scenarios
with varying emphasis on auditory and audiovisual losses, and
what training strategy results in the best representation quality
for phonemic discrimination and audiovisual retrieval tasks.

A. Datasets

We utilized SpokenCOCO (SC) dataset [21] as the training
data. It comes with 123k images and 5 spoken English captions
per image, resulting a total of 742 h of speech. We used
118k images for model training and 5k images for testing
on semantic retrieval tasks. Phoneme discrimination of the
representations was measured on LibriSpeech (LS) dev-clean
subset (denoted by C) [17].
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B. Model variations

We considered three base model variants: 1) VGS only
(α = 1), 2) W2V2 only (α = 0), and 3) VGS+ with an
equal emphasis on both losses (α = 0.5). We also defined six
training variations of these by relative scheduling of the basic
optimization approaches. In each variation, one base model
was used as a pretraining for follow-up training using another
variant. We denote the scheduled system as (A, B), where A is
the base model used at the pretraining phase and B is the main
training phase. As the first scenario, we pretrained with VGS
or W2V2 and continued with VGS+ (i.e, (W2V2, VGS+) and
(VGS, VGS+)). As the second scenario, we pretrained with
each individual model of VGS or W2V2 and then continued
with the other model ((W2V2, VGS) and (VGS, W2V2)). And
finally as the third scenario, we pretrained with VGS+ and
continued with one of the individual models of VGS or W2V2
((VGS+, W2V2) and (VGS+, VGS)).

C. Evaluation

Representation learning was evaluated in terms of semantic
and phonemic performance scores, as tested separately for the
training variations to investigate what is the optimal scenario
regarding the measured performance metrics. We also qualita-
tively analyzed loss curves to understand how the optimization
strategy affects the dynamics of the training process.

As the metric for phonemic representations, we used the
ABX phonemic discrimination score by [22], also used as
one of the primary metrics in ZeroSpeech challenges [15].
ABX is measured in both within- (W) and across-speaker (A)
conditions, whether the latter reflects cross-speaker generality
of the learned phonemic distinctions (see [22]).

For evaluating the semantic knowledge of the model, we
used recall@k metric [23] to measure speech-to-image and
image-to-speech retrieval performance (see [1] for more details
on evaluation of semantic retrieval tasks in VGS models.)

D. Implementation Details

The base models were trained for 70 epochs, as based on
saturation of semantic retrieval performance in pilot experi-
ments. For the scheduling scenarios, the base model trained
for 20 epochs was used as the initialization for another 50
epochs with the other loss weighting configuration. We used
Adam optimizer with an initial learning rate of 10-4, a warm-
up fraction of 0.1, and then a linear decay towards the end of
the training. The optimizer state was reset after the pretraining
process. For the semantic retrieval score, we used classification
tokens of the speech and the image embedding layers. We
report the recall@10 on 25k test pairs (5k images each paired
with 5 spoken captions) at the final epoch of the training. For
measuring the ABX phoneme discrimination error, we saved
the model every 5 epochs and measured the ABX-error for
representations of all the 12 intermediate layers of the speech
encoder and decoder blocks (cf. Fig 1).

IV. RESULTS AND DISCUSSION

A. Semantic retrieval

For semantic retrieval performance, we measured and com-
pared recall@1 and recall@10 scores for both speech-to-image
and image-to-speech retrieval tasks. Table I shows the results
on test data obtained at the end of the training process.

The base models, VGS and VGS+, have similar perfor-
mance. This result accords with the previous report [13] and
indicates that the semantic retrieval performance does not
benefit from simultaneous optimization of speech encoder
representations for the auditory SSL (W2V2) task. However,
when the W2V2 training precedes VGS training (the (W2V2,
VGS+) and (W2V2, VGS) variants), there is a substantial
improvement in recall scores. Notably, we observe this im-
provement when pretraining on the same data as the main
training, whereas previous improvements have been reported
with pretraining on large-amounts of additional speech data
not used for the VGS task (LibriSpeech in [13], [18]). We
also tested and observed that using both LibriSpeech and
SpokenCOCO at the pretraining step does not improve the re-
trieval performance of the (W2V2, VGS) and (W2V2, VGS+)
variants above what is gained by using either of the datasets.
Thus, the improvement is mainly the result of self-supervised
initialization, not from using more speech data (see also the
results from different data settings in [13]). We also tested if
the semantic scores can be further improved by incorporating
more epochs to the W2V2 pretraining phase. However, this
did not improve the recall scores from those obtained by the
initial setting of 20 epochs.

TABLE I
SEMANTIC RETRIEVAL RESULTS (RECALL AT 1 AND 10) FOR THE BASE
AND THE SCHEDULED SYSTEMS OBTAINED AT THE END OF TRAINING.

speech-to-image image-to-speech
r1 r10 r1 r10

Base models
W2V2 0.0 0.2 0.0 0.2
VGS 28.4 69.4 40.1 81.5
VGS+ 29.0 70.1 40.1 81.8
Scheduled trainings
(W2V2, VGS+) 32.0 74.7 44.4 85.0
(VGS, VGS+) 27.9 68.8 39.3 81.3
(W2V2, VGS) 32.3 74.9 44.8 84.8
(VGS, W2V2) 0.0 0.2 0.0 0.2
(VGS+, W2V2) 14.5 52.0 7.5 32.5
(VGS+, VGS) 28.8 70.0 39.8 81.5
FaST-VGSCO (Pre LS) [18] 31.8 75.0 42.5 84.9

The reason why the same retrieval performance gain is not
achieved by simultaneous training from scratch (i.e., VGS+)
could be because the VGS loss might be easier to optimize
compared to the W2V2 training. This may cause VGS to
dominate the training process, resulting in a less optimal
overall solution for the W2V2 (see Fig. 3 and the discussion
at comparing the two losses curves).

Finally, catastrophic forgetting quickly results in chance-
level recall score when switching from VGS pretraining to
W2V2 training. In contrast, the performance remains fairly
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stable with (VGS+, W2V2). This suggests that synergistic
representations between SSL and VGS are possible for audio-
visual learning, but require the presence of both mechanisms
from the start of the training in order to be robust against later
alternation between the two tasks.

B. Phonemic discrimination
Table II shows the ABX results obtained for the different

training variants. In general the VGS outperforms the W2V2
training in all tested variants with the best ABX score obtained
at (VGS+, VGS) and then VGS. Bearing in mind that all
models are trained on SC that is different domain data from LS
used at ABX test, this result suggests that audiovisual training
provides phonemic representations that better generalize across
data domains. In contrast, pretraining with W2V2 prior to VGS
or VGS+ training does not result in equally good cross-dataset
generalization in ABX. This is a highly relevant finding that
requires further research, considering that SSL models tend to
suffer from domain-mismatch problems ( [24]). In addition,
previous work has not reported any performance benefits for
ABX from the use of visual data, but, except for [13], all
these studies have used LS data for both SSL training and
ABX testing (see a comparison in [13]).

TABLE II
ABX ERROR MEASURED WITHIN SPEAKER (W-C) AND ACROSS SPEAKERS

(A-C) ON LIBRISPEECH (LS) DEV-CLEAN SET. CHANCE LEVEL IS 50.

Model W-C (layer) A-C (layer)
Base models
W2V2 7.05 (3) 9.53 (4)
VGS 4.82 (4) 6.44 (4)
VGS+ 5.09 (8) 6.81 (8)
Scheduled trainings
(W2V2, VGS+) 6.95 (2) 8.72 (5)
(VGS, VGS+) 5.49 (7) 7.55 (8)
(W2V2, VGS) 6.74 (2) 8.75 (2)
(VGS, W2V2) 8.4 (1) 11.54 (2)
(VGS+, W2V2) 6.23 (8) 8.35 (8)
(VGS+, VGS) 4.50 (9) 6.02 (9)
FaST-VGS+ (LS+SC) [13] 4.24 5.08
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Fig. 2. ABX error (W-C) for the tested training variants. Left: as a function
of speech encoder (no. 1–8) and decoder (9–12) layer after the full 70 training
epochs. Right: best layer score across the training epochs. Note the logarithmic
scale of the y-axes.

Fig. 2 (left) shows (W-C) ABX error of the different hidden
layers of the transformer-based speech encoder and decoder.

The first layers of the encoder perform comparably in all
tested variants. In the best performing variant of (VGS+,
VGS) the score improves slightly for the deeper encoder layers
whereas in VGS all hidden layers perform similarly well in
the task. Overall, for the variants having VGS+ at one of the
training phases, the error decreases with increasing layer depth
in the encoder and increases again for deeper layers of the
speech decoder. A similar performance pattern across layers
is observed when W2V2 is trained on LS data [13].

Fig. 2 (right) illustrates the lowest (W-C) ABX error (among
layers) during the training epochs. For all base models, the
ABX error improves monotonically during the training. For the
scheduled versions, the ABX behavior at transitions between
the losses is always smooth when the initial training phase
is the acoustic-level W2V2 (blue lines). In contrast, in (VGS,
W2V2), and then with a slighter rate at (VGS+, W2V2), the
error increases substantially when shifting from VGS/VGS+ to
W2V2 training. The behavior of the ABX score at transition
points suggest that the phonemic representations learned from
acoustics can be further transferred to semantic tasks, but
the representations learned during the semantic optimization
cannot be initially adopted to acoustic learning. However,
having in mind that all our variants are trained on SC data, i.e.,
different domain from the LS test data, further investigation is
required to distinguish the effect of domain change from the
sheer role of the learning task.

C. Training loss analysis
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Fig. 3. Training loss curves for all tested model variants (log-scale): Left:
lossAV . Right: lossAUD . The graphs show full training (70 epochs) for the
base models (solid lines) and the combinations of 20 epochs of pretraining
and 50 epochs of main training for the training schedule variants.

Fig. 3 shows the loss curves of lossAV (left) and lossAUD

(right) for the base and the scheduled models. Although the
general range of the two lossAV and lossAUD curves are very
close, in overall lossAV decays with steeper slope especially
at the later epochs. Comparing the faster decay rate of the
lossAV in VGS to decay of lossAUD in W2V2 suggests that
audio-visual semantic mapping is an easier task compared to
W2V2 acoustic modeling, and the pattern stays same when
the two losses are optimized simultaneously (i.e. in VGS+).

Furthermore, similar to the attitude found at the semantic
retrieval scores, catastrophic forgetting also leads to rapid
decrease of lossAV to a chance-level when switching from
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VGS to W2V2. An analogous pattern is observed in the
behavior of the lossAUD when switching from W2V2 to
VGS. In contrast, the forgetting effect is much milder in the
cases where the pretraining phase includes optimization of
both losses (i.e., VGS+ pretraining). For example, lossAV in
(VGS+, W2V2) tolerates the absence of audio-visual updates
for a few epochs after which it starts to gradually increase.

V. CONCLUSIONS

This study set out to investigate the coordination be-
tween SSL and VGS mechanisms. We tested a number of
training scenarios involving the wav2vec 2.0-based SSL and
transformer-based VGS models, and studied the performance
of the resulting speech representations in semantic cross-modal
retrieval and phoneme discrimination tasks. The results show
that simultaneous learning with SSL and VGS mechanisms
does not provide performance gains for phonemic or semantic
learning compared to the individual mechanisms. However,
joint training ensures synergetic representations that are robust
against catastrophic forgetting in the individual tasks in follow-
up training with just one mechanism. In contrast, acoustic
pretraining prior to audiovisual semantic training boosts the
performance on the semantic task, even when the SSL-based
pretraining takes place on the same dataset.

Notably, our results show that the best phonemic represen-
tations, when evaluated in cross-domain conditions, were ob-
tained by visually-grounded learning, and the representations
can be further improved if the visual learning is preceded
by simultaneous visual and acoustic learning. This is in
contrast to previous findings [13], [15]. However, according
to our knowledge, this is the first study to compare SSL and
VGS when neither of the mechanisms have access to the
corpus used in the ABX test for phonemic discrimination. In
future, we plan to further investigate if speech representation
learning with the help of visual semantics helps to improve
generalization across datasets compared to purely SSL-based
speech representations.
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