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Abstract—In this paper, we propose an optimization-based
adversarial attack against Neural Machine Translation (NMT)
models. First, we propose an optimization problem to generate
adversarial examples that are semantically similar to the original
sentences but destroy the translation generated by the target
NMT model. This optimization problem is discrete, and we
propose a continuous relaxation to solve it. With this relaxation,
we find a probability distribution for each token in the adversarial
example, and then we can generate multiple adversarial examples
by sampling from these distributions. Experimental results show
that our attack significantly degrades the translation quality of
multiple NMT models while maintaining the semantic similarity
between the original and adversarial sentences. Furthermore,
our attack outperforms the baselines in terms of success rate,
similarity preservation, effect on translation quality, and token
error rate. Finally, we propose a black-box extension of our attack
by sampling from an optimized probability distribution for a
reference model whose gradients are accessible.1

Index Terms—Adversarial attack, continuous relaxation, natur-
al language processing, neural machine translation, optimization.

I. INTRODUCTION

Neural Machine Translation (NMT) models have been
widely used in recent years due to their impressive quality of
translation [1]. Nevertheless, NMT models are susceptible to
carefully crafted perturbations of their input, called adversarial
attacks [2], [3]. Even when the adversarial example is semanti-
cally similar to the original sentence, the translation quality of
these models may degrade drastically. As adversarial examples
reveal the vulnerabilities of the NMT models, their study is a
prerequisite step for making systems robust and reliable.

Adversarial attacks have been widely studied in computer
vision systems [4], [5]. However, due to the discrete nature
of the textual data, the adversarial attack algorithms against
image data cannot be directly applied to sentences. For such
discrete data (thus not differentiable), it is difficult to employ
optimization-based methods, common in computer vision, to
generate adversarial examples against NMT systems. As stud-
ied in [6], we define an untargeted adversarial attack against
NMT models such that the adversarial example is meaning-
preserving in the source language but meaning-destroying in
the target language. In other words, the generated adversarial
examples should be semantically similar to the original sen-
tences while they decrease translation quality.

1The source code of our attack can be found at https://github.com/
sssadrizadeh/NMT-untargeted-attack.

The vulnerability of NMT systems to adversarial attacks
has been studied in the literature. First, Belinkov and Bisk [2]
show that character-level NMT models are highly sensitive
to substitutions or permutations of letters in input sentences.
Furthermore, Ebrahimi et al. [3] propose a white-box adver-
sarial attack based on character-level modifications (e.g., flip
and insert) by using directional derivatives of the loss of the
NMT models to have a first-order estimate of the change in
the loss function when a character is changed. Although these
character-level attacks show the vulnerability of NMT models,
they can be easily detected. To generate adversarial examples
that are semantically similar to the original sentence, most of
the existing adversarial attacks against Natural Language Pro-
cessing (NLP) systems, and in particular translation systems,
consider word replacement [6]–[8]. These methods select some
of the words in the sentence (randomly or by ranking), then
they find suitable substitutions (using a Language Model
(LM) or the embedding representation), and finally replace
some of the words to fool the target model. These word-
replacement methods may have sub-optimal performance due
to their heuristic strategies. Cheng et al. [9] propose a targeted
adversarial attack based on optimization in the embedding
space of the NMT model, and they use gradient projection
to solve it. Their proposed optimization problem consists of a
loss term to fool the target NMT model and a group lasso term
to constrain the number of perturbed tokens. Since they use the
embedding space of the target NMT model to impose semantic
similarity, their adversarial examples may not necessarily be
semantically similar to the original sentences.

As opposed to previous heuristic word-replacement meth-
ods, in this paper, we propose an optimization-based method to
generate adversarial examples, which are semantically similar
to the original sentences, and highly degrade the translation
quality of the NMT models. First, we introduce a discrete
optimization problem to craft adversarial examples against
NMT models. To solve this optimization problem by con-
tinuous relaxation, we build upon the idea proposed in [10]
and optimize a probability distribution for each token in the
adversarial example. By using a language model, we incorpo-
rate a differentiable constraint in our optimization problem to
ensure the semantic similarity between the original sentence
and the adversarial example. Afterwards, we can sample from
the optimized probability distributions and generate multiple
adversarial examples so that we can choose the one that affects
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the translation quality the most. Moreover, we easily extend
the proposed method to the black-box setting and show that
our attack is effective even if we do not have access to the
parameters and gradients of the target model, which may
be more dangerous in real-life applications. We evaluate our
proposed attack against different NMT models and translation
tasks. Experimental results indicate that for more than 65%
of sentences, our white-box attack can reduce the translation
quality in terms of BLEU score by more than half while
maintaining the semantic similarity between the adversarial
and original sentences in the source language. Our attack
outperforms other white-box and black-box attacks against
NMT models in the literature in terms of success rate, decrease
in translation quality, semantic similarity, and token error rate.

The rest of this paper is organized as follows. We formulate
the problem of generating adversarial examples against NMT
models and the continuous relaxation of the proposed opti-
mization problem in Section II. In Section III, we evaluate our
attack against different NMT models in the white-box setting
and then extend our attack to the black-box setting. Finally,
the paper is concluded in Section IV.

II. PROPOSED ADVERSARIAL ATTACK

In this section, first, we introduce a discrete optimization
problem in the token space to find an adversarial example.
To solve this optimization problem, we propose a relaxed
continuous optimization problem, which finds a probability
distribution for each token in the adversarial example.
A. Discrete Optimization Problem

NMT models convert a sequence in the source language to
a sequence in the target language. Let f be the target NMT
model that maps the input sequence x ∈ X to its translated
sequence. We assume that the input sentence is a sequence of
k tokens x = x1x2...xk, where each token comes from a fixed
vocabulary V . The goal of the NMT model is to maximize the
probability of the ground-truth translation y = y1y2...ym, that
is a sequence of m tokens, given the input sequence x. We
search for an adversarial sentence x′, which we assume to also
have k tokens, that fools the target NMT model to generate a
translation far from the ground-truth translation. On the other
hand, in order to make the perturbation imperceptible, the
generated adversarial examples should be semantically similar
to the original sentence in the source language.

NMT models generate a probability vector over the vocab-
ulary set for each token in the translated sentence. In order
to fool the NMT model, we can perturb the input sentence to
maximize the training loss (i.e., minimize the negative cross-
entropy loss) of the target model. By increasing the cross-
entropy loss between the output of the target model and the
ground-truth translation, we can maximize the probability of
a wrong prediction for the i-th token given that the previous
tokens have been translated correctly:

LAdv = −Lf (x
′,y), (1)

where Lf is training loss of the NMT model when the input
is the adversarial example x′ and reference translation is y.

In order to maintain semantic similarity between the adver-
sarial and original sentences, we propose to add a similarity
term to the loss function. Many of the works in the literature
use embedding representations of the tokens to measure their
similarity [11], [12]. However, if the context is not taken into
account, one can produce unrealistic adversarial examples.
We use the contextualized embeddings of an LM to repre-
sent the tokens in the original and adversarial sentences x
and x′. The LM, g, generates a sequence of contextualized
embedding vectors for the input and adversarial sentences as
g(x) = ⟨v1, ...,vk⟩ and g(x′) = ⟨v′

1, ...,v
′
k⟩, respectively. The

vector representation allows measuring the similarity between
two tokens by cosine similarity between their respective vector
representations. Thus, we adapt the proposed metric in [13],
i.e., BERTScore, to the case of same-length sentences. We
compute the similarity loss, LSim, which measures the dis-
tance between the original and adversarial sentence as follows:

LSim = −
k∑

i=1

wi
v⊺
i v

′
i

∥vi∥2.∥v′
i∥2

, (2)

where wis are inverse document frequency (idf) scores. Since
rare tokens affect the similarity more [14], idf scores are used
for the importance weighting of the tokens.

Our optimization problem for generating an adversarial
example is a weighted summation of the proposed loss terms:

x′ = argmin
x′
i∈V

[LAdv + αLSim], (3)

where α is the hyper-parameter that determines the relative
importance of the similarity loss term.
B. Continuous Relaxation

The optimization problem of Eq. (3) is discrete since the
adversarial example should consist of valid tokens, i.e., the
tokens should be in the vocabulary set V . In this section, we
propose a continuous relaxation to this optimization problem.

We can represent an adversarial sentence with a sequence of
one-hot vectors zi ∈ R|V| for each of its tokens. The element
of the one-hot vector zi that corresponds to the index of the
token xi in the vocabulary V is one, and the other elements
are zero. Therefore, we can optimize the objective function
in (3) with respect to the matrix Z ∈ R|V|×k, whose i-th
column is the one-hot vector zi. In order to feed a sentence
to a transformer model, each token is then transformed into a
continuous embedding vector [15]. We can arrange the input
embedding vectors of the NMT model f for all the tokens in
the vocabulary V as the columns of matrix Ef . We also define
matrix Eg , whose columns are the input embedding vectors of
the language model g. Thus, we can rewrite the optimization
problem with respect to Z as follows:

argmin
Z∈R|V|×k

[LAdv(EfZ) + αLSim(EgZ)],

s.t. Zi,j ∈ {0, 1}, 1|V|Z = 1, (4)

where 1|V| = [1...1] ∈ R|V| is a vector of all ones. The
constraints are that Z is a Boolean matrix and that each column
of Z is a one-hot vector.
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TABLE I
PERFORMANCE OF WHITE-BOX ATTACK AGAINST DIFFERENT NMT MODELS.

Task Method Marian NMT mBART50
ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓ ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓

En-Fr
kNN 36.24 0.35 0.17 0.82 396.45 19.32 31.22 0.29 0.12 0.85 346.28 21.12

Seq2Sick 28.11 0.21 0.16 0.74 185.12 14.40 27.01 0.19 0.14 0.75 146.01 13.68
ours 71.79 0.68 0.26 0.85 229.06 12.24 65.16 0.59 0.22 0.87 201.61 8.92

En-De
kNN 39.25 0.41 0.17 0.81 445.61 19.73 36.67 0.39 0.12 0.85 373.26 21.49

Seq2Sick 37.34 0.31 0.21 0.66 303.60 18.70 33.54 0.29 0.19 0.66 276.32 18.38
ours 72.55 0.78 0.26 0.85 214.47 12.94 66.46 0.71 0.21 0.85 249.72 9.50

In order to solve this optimization problem, we consider the
continuous relaxation of the one-hot vectors zi by using the
Gumbel-Softmax trick [16]. In other words, we assume that
each token in the adversarial example (x′

i) is a sample from
a categorical distribution over the tokens of the vocabulary V:
x′
i ∼ Categorical(πi), where πi = Softmax(Pi) is the proba-

bility distribution over the tokens of the vocabulary. Then, we
use the Gumbel-Softmax trick to sample differentiably from
these distributions since it allows the samples to be sparse.
Hence, the problem is finding the probability distributions πi,
instead of the one-hot vectors zi.

However, since the Gumbel-Softmax samples are not one-
hot vectors, we approximate the input embedding vectors
by computing their linear combination by multiplying the
matrix of all the embedding vectors and the Gumbel-Softmax
samples. Hence, we can finally reformulate the proposed
optimization problem of Eq. (3):

argmin
P∈R|V|×k

EZ′∼P′ [LAdv(EfZ
′) + αLSim(EgZ

′)], (5)

where P′ is the Gumbel-Softmax distribution to draw soft
samples from the categorical distributions πi, and Z′ is a
Gumbel-Softmax sample. The optimization problem (5) is
continuous. First, we minimize it stochastically by sampling
a batch from P′ in each iteration. After optimizing the
probability distributions, we sample from them to generate
the tokens of the adversarial example. By sampling multiple
times, we can generate different adversarial samples for one
input sentence until we find an adversarial example that affects
the translation quality more.

III. EXPERIMENTAL RESULTS

In this Section, we evaluate our proposed attack against dif-
ferent NMT models both in white-box and black-box settings.
A. Setup

To test our attack, we use En-Fr and En-De validation sets
of WMT14 [17]. We also consider different French-to-English
translation datasets from the OPUS corpus collection [18].
These datasets are available on the HuggingFace platform.

For the target NMT model, we consider Hugging Face
implementation [19] of English-to-French and English-to-
German Marian NMT [20] models and multilingual mBART50
[21] NMT model. We also need a language model, with the
same tokenizer as the target NMT model, for the contextual
embeddings in the similarity loss term of our optimization
problem. Hence, we train a language model (with GPT-2
structure [15]) on the WikiText-103 dataset [22].

In order to stochastically solve our optimization problem of
Eq. (5), we use an Adam optimizer [23] for 100 iterations with
a learning rate of 0.3 and a batch size of 5. The matrix P is
initialized with zeros except for the elements that correspond
to the tokens of the input sentence, which we initialize with a
positive value to make them more probable. After an ablation
study on the coefficients of the optimization problem, we
set α = 45 for Marian NMT and α = 120 for mBART50.
Moreover, we sample 100 times from the optimized Gumbel-
Softmax distribution and consider the sample that degrades
the translation quality the most, in terms of BLEU score
[24], as the generated adversarial example. We evaluate the
performance in terms of different metrics: 1) the attack success
rate, where we define an adversarial attack as successful if
the BLEU score is decreased by more than half (ASR); 2) the
relative decrease in translation quality in terms of BLEU score
and chrF (RDBLEU and RDchrF); 3) the semantic similarity
between the adversarial and clean samples, computed by the
multilingual sentence encoder [25] (Sim.); 4) perplexity score
of the adversarial example by GPT-2 (large) language model
as a measure of fluency; 5) token error rate of the adversarial
example compared to the original sentence (TER).

Finally, we compare our attack with other white-box attacks
against NMT models in the literature.2 We compare our
method with the kNN attack of [6]. This method replaces
the important tokens in the sentence, found by the gradients,
with their nearest tokens in the embedding space of the NMT
model. Moreover, we adapt the Seq2Sick attack [9], which
is a targeted attack against NMT models, to the untargeted
settings considered in our work. Seq2Sick is based on an
optimization problem, which contains a similarity term in the
NMT embedding space and a group lasso term to impose
sparsity on the number of perturbed tokens.

B. White-box Attack Results

The performances of our attack against different NMT
models compared to [6] and [9] can be found in Table I. These
results are computed for 1000 randomly chosen sentences of
the newstest2013 dataset. We can see that, on average, our ad-
versarial attack is able to decrease the translation BLEU score
by half while maintaining the semantic similarity higher than
0.85. In all cases, for more than 60% of the input sentences,
our attack generates at least one successful sample, which
degrades the BLEU score by more than half. In all cases,
our method outperforms other attacks in terms of semantic

2Code of [7], an untargeted attack against NMTs, is not publicly available.
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TABLE II
AN ADVERSARIAL EXAMPLE AGAINST MARIAN NMT (EN-DE)

GENERATED BY DIFFERENT METHODS. (BLEU SCORE IN BRACKETS)

Org. During the morning, the Migration and Integration working group also sought to continue its
discussions.

Ref. Trans. Am Vormittag wollte auch die Arbeitsgruppe Migration und Integration ihre Beratungen
fortsetzen.

Org. Trans.
Am Vormittag bemühte sich die Arbeitsgruppe "Migration und Integration" auch darum, ihre
Diskussionen fortzusetzen.

Adv. (ours) During the morning, the Migration and Integration working Players also sought to continue
its discussions.

Trans.
Während des Vormittags versuchten die "Migration and Integration Working Players" auch
ihre Diskussionen fortzusetzen.

Adv. (kNN) During the morning, the mask and Integrationos group also sought with continue its
conversations.

Trans. Am Morgen suchten auch die Maske und Integrationos Gruppe mit ihren Gesprächen weiter.
Adv.
(Seq2Sick) During the early, the Migration and Integration working group alsoility to continue its fossil.

Trans.
Während der frühen, die Migration und Integration Arbeitsgruppe auch die Fähigkeit, seine
Fossilien fortzusetzen.
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Fig. 1. Effect of the hyper-parameter α on the performance.

similarity, success rate, and token error rate. Moreover, its
effect on the translation quality is larger than the baselines in
terms of BLEU score and chrF in all cases. The perplexity
score of our generated adversarial examples is competitive
with those of Seq2Sick.

Regarding the runtime, in the case of Marian NMT (En-
Fr), the optimization of our adversarial distribution takes 2.91
seconds, and the generation of 100 adversarial samples by
sampling from the optimized distribution takes 4.75 seconds
on a system equipped with an NVIDIA A100 GPU. The kNN
attack takes 1.45 seconds to generate an adversarial example;
however, it is much less effective than our attack in terms of
success rate. Finally, Seq2Sick takes 38.85 seconds to generate
an adversarial example which is much more than our attack.

Table II shows an adversarial example by different attacks
against Marian NMT (En-De). As this table shows, our ad-
versarial sample is a fluent sentence and similar to the input
sentence. It also largely degrades the BLEU score. However,
the changes made by kNN and Seq2Sick are detectable.

Furthermore, Fig. 1 shows the impact of α, the coefficient
of the similarity loss term in Eq. (5), on the relative decrease
of the BLEU score of the translations of the adversarial and
clean sentences, as well as on the semantic similarity between
our adversarial example and the original text. These values
are computed for Marian NMT (En-Fr) for 200 randomly
chosen sentences of the newstest2013 dataset. We can see that
a smaller value of α results in more aggressive adversarial
sentences, which degrade the BLEU score more drastically.

In all the previous results, we considered an attack as
successful if the BLEU score is reduced by more than half.
Fig. 2 shows the success rate versus different values of α
for different thresholds of the BLEU score ratio criteria. By
increasing the similarity coefficient α, the attack becomes
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Fig. 2. ASR for different BLEU score ratio thresholds and coefficient α.

TABLE III
PERFORMANCE OF WHITE-BOX ATTACK AGAINST DIFFERENT DATASETS.

Datasets ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓

News Commentary 62.28 0.69 0.23 0.86 176.71 12.31
MultiUN 61.92 0.61 0.27 0.87 159.36 12.33
Europarl 64.21 0.63 0.27 0.85 183.75 11.16
OPUS Books 70.00 0.84 0.30 0.79 377.18 14.94

less aggressive, and the success rate decreases. Moreover, for
α = 45, which was used in our experiments, the relative
decrease in BLEU score is more than 0.3 for more than 90%
of the generated adversarial examples.

To evaluate our attack against different types of datasets,
we show in Table III the results of our adversarial attack
against Marian NMT on 300 randomly chosen sentences from
different En-Fr translation datasets from the OPUS corpus
collection [18]. We can see that the performance of our attack
is consistent among different datasets. The lower performance
for OPUS Books in terms of semantic similarity and perplexity
can be explained by the fact that this dataset is composed
of book passages. Since the nature of this dataset is more
distant from Wikitext-103, used to train the language model,
the similarity loss term of the optimization problem, which
uses the LM contextual embeddings, is less efficient.

C. Extension as a Black-box Attack

Since access to the target model may be limited in real-life
applications, it is interesting to analyze the performance of our
attack in black-box settings. To extend our attack to the black-
box settings, we propose to first optimize the distributions of
adversarial tokens based on Eq. (5) for a reference NMT model
whose gradients are assumed to be accessible. Then for the
sampling step of the algorithm, we can sample from these
optimized distributions and test them against the target model.
We optimize our adversarial distribution on Marian NMT
(since it is lighter than mBART50) and test the robustness of
mBART50 to the samples taken from those distributions. We
compare our attack with WSLS [8], a black-box attack against
NMT models based on word-replacement. Also, we evaluate
kNN and Seq2Sick in the black-box scenario by transferring
the adversarial examples, i.e., we attack the target model
with the generated adversarial examples against a reference
model. The results are shown in Table IV. We notice that the
performance of our attack is almost unchanged for the black-
box setting compared to the white-box setting. Moreover,
our attack outperforms all the baselines in terms of success
rate, token error rate, and RDBLEU. Semantic similarity and
RDchrF of our attack and WSLS are also comparable
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TABLE IV
PERFORMANCE OF BLACK-BOX ATTACK AGAINST MBART50.

Task Method ASR↑ RDBLEU↑ RDchrF↑ Sim.↑ Perp.↓ TER↓ #Queries↓

En-Fr
kNN 34.44 0.33 0.15 0.82 391.49 22.66 -

Seq2Sick 25.90 0.20 0.15 0.74 183.21 21.74 -
WSLS 55.92 0.58 0.27 0.84 214.30 31.12 1423
ours 66.27 0.59 0.23 0.85 211.87 14.73 100

En-De
kNN 37.47 0.38 0.16 0.81 435.67 22.67 -

Seq2Sick 33.23 0.29 0.20 0.66 299.00 27.19 -
WSLS 47.28 0.52 0.20 0.86 222.88 29.09 1262
ours 62.12 0.65 0.20 0.85 193.42 13.22 100

Regarding the runtime in the black-box settings for English-
to-French translation, it takes 2.91 seconds to optimize the
probability distributions for the reference model (Marian
NMT), and it takes 16.56 seconds to sample 100 adversarial
examples from the optimized distributions and test them
against the target model (mBART50). On the other hand,
WSLS takes 1904.98 seconds to generate an adversarial ex-
ample, which is far longer than our attack. Finally, the number
of queries to the target NMT model required by WSLS is very
large, which may not be feasible in practical scenarios.

In summary, our adversarial attack outperforms the base-
lines in in both white-box and black-box settings. We can
generate adversarial examples that preserve the meaning of the
original sentences more with a smaller number of perturbed
tokens while they highly affect the translation quality.

IV. CONCLUSION

In this paper, we proposed an optimization-based adver-
sarial attack against NMT models. We introduced a novel
optimization problem in the discrete input token space of the
target model. Then, we proposed a continuous relaxation by
considering a probability distribution for each token in the
adversarial example and by using the Gumbel-Softmax trick to
differentiably sample from these distributions. We also showed
that by sampling from the optimized probability distribution,
we can successfully attack target NMT models in the black-
box setting. The experimental results demonstrate that the
proposed attack is highly effective against different NMT
models and translation tasks. Our attack outperforms other
methods in both white-box and black-box scenarios in terms
of success rate, semantic similarity in the source language, and
token error rate. Our adversarial attack let us better understand
the vulnerability of NMT systems and shows the necessity of
more robust systems for real-time scenarios.
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