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Abstract—In pulse-echo ultrasound imaging, the goal is to
achieve a certain image quality while minimizing the duration
of the signal acquisition. In the past, fast ultrasound imaging
methods applying sparse signal recovery have been implemented
by accepting a single pulse-echo measurement. However, they
have experienced a certain amount of reconstruction error. In
sparse signal recovery, reducing the correlation between the
samples of the measurements observed by the different receivers
is beneficial for lowering the reconstruction error. Exploiting
the Born approximation and Green’s function for the wave
equation, the analytical inverse scattering problem can be defined
in matrix-vector form. Adopting this setting, it has been suggested
in the past to reduce the correlation between the samples of
the measurement using Cylindrical Waves (CWs) with randomly
selected delays and weights. In a similar setting, we created
an optimization problem accepting transmission delays and
weights as variables to minimize the correlation between the
samples of the measurement in each receiver. We demonstrate
via simulations that CWs employing the optimized transmission
parameters outperformed the cases with Plane Wave Imaging
(PWI) and CWs with random transmission parameters in terms
of reconstruction accuracy.

Index Terms—inverse scattering problem, optimized incident
waves, sparse signal recovery, fast pulse-echo ultrasound imaging

I. INTRODUCTION

Ultrasound signals are being employed in areas like med-

ical imaging [1], non-destructive testing (NDT) [2], commu-

nication [3] and navigation [4]. In many of these application

areas, it is required to have real-time systems. Therefore, fast

data acquisition without sacrificing the accuracy of the signal

reconstruction is crucial.

There are several recent approaches attempting to overcome

the trade-off between reconstructed ultrasound image quality

and data acquisition speed by accepting single pulse-echo

measurement. These approaches mostly perform deep learning

techniques [5] and sparse signal recovery [6], [7] methods.

Although the sparse signal recovery methods achieve good

reconstruction accuracy, this can still be improved by reducing

the correlation between the different samples of the pulse-echo

measurements.

This work was partially supported by the Fraunhofer Internal Programs
under Grant No. Attract 025-601128, the German Research Council (DFG)
under the project ”CoSMaDu”, as well as the Thuringian Ministry of
Economic Affairs, Science and Digital Society (TMWWDG).

Fig. 1. 2D inhomogeneous reconstruction area with partial cracks holding the
compressibility value κ1 inside the covering material with compressibility κ0.

In ultrasound imaging, the system of linear equations

addressed in sparse signal recovery methods exploiting the

sparsity of material properties of measurement area can be

derived via the Lippmann-Schwinger equation [8] meeting the

Sommerfeld radiation condition [9]. The feasibility and the

estimation accuracy of the sparse signal recovery algorithms

depend on the sparsity level of the estimated signals defined

in an appropriate domain and the correlation between the

different samples of the pulse-echo measurements received by

the individual receivers. In the related works [6], [7], pulse-

echo ultrasound imaging based on sparse recovery adopting

Plane Wave Imaging (PWI) in the Fourier domain was intro-

duced without any attempt to decrease the correlation between

the samples of the single pulse-echo measurement. In [10],

[11], this correlation was reduced by transmitting randomly

weighted and delayed Cylindrical Waves (CWs). In our paper,

an optimization algorithm forcing the transmitters to minimize

the correlation between different pulse-echo samples in the

Fourier domain by choosing optimum delays and weights for

transmitted CWs is introduced.

In the following sections, a physical model of the sparse
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inhomogeneities of the reconstruction area is defined. Then,

a model for inverse scattering and sparse signal recovery

problems is described. Afterward, the optimization process of

the transmitted CWs, which is the contribution of the work,

is formulated. Lastly, the simulation parameters are specified,

and the performance results of the proposed method based on

the simulation model are demonstrated.

II. PHYSICAL MODEL

In this part, the pulse-echo signal is written as a function of

the transmission parameters in order to design an optimization

problem afterward minimizing the correlation between differ-

ent samples of the pulse-echo measurements.

A. Model of the Reconstruction Area

The reconstruction of the material parameters inside a

certain reconstruction area is aimed to realize via the waves

passed through the corresponding volume. The reconstruc-

tion area as seen in Fig. 1 is assumed to be homogeneous

with compressibility κ0 outside inhomogeneous regions which

scatter the incident waves without dispersion and absorption

in accordance with the first order Born approximation [12],

and have constant compressibility κ1. Those inhomogeneous

regions have the coordinates defined by the set ζ ⊂ {(x, z) :
x ∈ R, z ∈ R

+}. The relative spatial fluctuations in the

reconstruction area can be defined as

γ(r) =

{

1− κ1(r)/κ0 for r ∈ ζ,

0 for r ̸∈ ζ,
(1)

while r ∈ R
2. The assumption of the sparsity of γ(r) enables

sparse recovery.

The reconstruction area in the implementation is discretized

using standard unit vectors ex and ez as

Z = {ri ∈ R
2 \ {z ≤ 0} : ri = r0 + ixdxex + izdzez,

0 ≤ ix < Nx, 0 ≤ iz < Nz, i = izNx + ix}
(2)

where r0 is the offset vector, dx, dz are the distances between

two grid points and Nx, Nz are the number of grid points

on x and z-axis correspondingly. Lastly, the set of transducer

coordinates of the uniform linear array (ULA) can be defined

as

M = {rel,m ∈ R
2 : rel,m = (m− 0.5(Nel − 1)dt,x) ex,

0 ≤ m < Nel}
(3)

where dt,x is the element distance, and Nel is the number of

transducer elements.

B. Formulation of Inverse Scattering Problem

Exploiting the affect of time delay on the Fourier domain

um(n− τm)
F
−→ um(ℓ)e−jωℓτm , the incident acoustic pressure

in each transmitter m employing the pulse with discrete

angular frequency ωℓ in the Fourier basis can be formulated

as

pm,ℓ = amum,ℓe
−jωℓτm (4)

where 0 ≤ ℓ < Nf is the discrete frequency index, am ∈ R

is the transmission weight, um,ℓ ≜ um(ℓ) is the ℓ-th Fourier

coefficient of the transmitted pulse, τm is the time delay of the

m-th transmitter and Nf is the number of frequency indices.

Then, the incident acoustic pressure field which is a result of

all transmitters transmitting at the same time, each with their

own delay and weight can be derived as

pinℓ (ri) =

Nel−1
∑

m=0

pm,ℓ gℓ(ri − rel,m) (5)

with the help of the free-space Green’s function gℓ(r) =
j
4H

(2)
0 (kℓ∥r∥2) [13, (2.14) and (2.19)] derived from the solu-

tion of inhomogeneous Helmholtz equations (∆+k2ℓ )gℓ(r) =
δ(r) [14, (47)] satisfying Sommerfeld radiation conditions,

where H
(2)
0 is the zero order Hankel function of second kind

[15, (§10.2(ii)) and (10.4.3)], kℓ = ωℓ/c0, c0 is the sound

speed in the homogenous medium, ∥r∥2 represents the ℓ2 norm

of r, and δ(r) denotes a two-dimensional unit impulse.

After modeling the incident acoustic pressure, the scattered

acoustic pressure for a single discrete frequency can be deter-

mined with the help of the Born approximation [12] as

pscℓ (r) ≈ k2ℓ

∫

ζ

γ(r′)pinℓ (r′)gℓ(r− r′)dr′, (6)

which can be discretized with (2) and (3), and turned into

pscℓ (rel,m) = k2ℓ∆A′

Ngrid−1
∑

i=0

γ(ri)p
in
ℓ (ri)gℓ(rel,m − ri) (7)

where ∆A′ = dxdz and Ngrid = NxNz.

C. Design of Sparse Signal Recovery Problem

In this section, the definition of the model matrix as

Gℓ(a, τ ) ≜ GRℓ
Diag(GTℓ

pℓ) = GRℓ
Diag(GTℓ

(uℓ ⊙
a ⊙ e−jωℓτ )) is introduced where GTℓ

∈ C
Ngrid×Nel con-

tains gℓ(ri − rel,m) on i-th row and m-th column, GRℓ
≜

k2ℓ∆A′GT
Tℓ

, pℓ, uℓ, a, τ ∈ C
Nel×1 are the column vectors

containing pm,ℓ, um,ℓ, am and τm in each row m correspond-

ingly, ⊙ denotes element-wise multiplication and Diag(·) op-

erator constructs a diagonal matrix from the argument vector.

For convenience, Gℓ will be used instead of Gℓ(a, τ ) in the

following part. Then, the pulse-echo signals at the receiver

elements in (7) can be denoted in matrix-vector form as

psc =







G0

...

GNf−1






γ + η = Gγ + η, (8)

with the addition of η ∈ C
NelNf×1, which is the result of ran-

dom perturbations like measurement noise, and γ ∈ R
Ngrid×1

is the vector containing the relative fluctuations γ(r) in each

element. Modeling the single pulse-echo measurement data

with (8), the target is to estimate γ given psc by exploiting

the sparsity of γ. This can be realized via the basis pursuit

denoising problem [16] for which the problem is formulated

as

γ̂ = argmin
γ∈CNel×1

∥γ∥1 s. t. ∥psc −Gγ∥2 ≤ η, (9)

where ∥η∥2 ≤ η.
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III. DERIVATION OF OPTIMIZED TRANSMISSION

PARAMETERS

One of the factors affecting the estimation accuracy of

the sparsity-promoting algorithms is the correlation between

the samples of the single pulse-echo measurement at each

receiver. Since the constructed model has predefined material

properties and signal bandwidth, only weights and delays

of the transmitted signal can be controlled in our model to

minimize the correlation between the received samples. The

maximum amount of the time delay should also be kept con-

siderably smaller than the total recording time by regarding the

additional time-of-flight. Then, the constrained optimization

problem minimizing this correlation together with limiting

the range of optimized delay vector 0 ≤ τ opt ≤ 1τmax by

utilizing the logarithmic barrier function can be defined as

aopt, τ opt = argmin
a,τ

(

∥GH(a, τ )G(a, τ )− INgrid
∥2F

−1T (log (1τmax − τ ) + log(τ ))
)

= argmin
a,τ

(A(a, τ ) +B(τ ))

(10)

where the vectors 0, 1 ∈ R
Nel×1 includes 0 and 1 in

each element correspondingly, the identity matrix INgrid
∈

R
Ngrid×Ngrid is selected as target value of the objective func-

tion among other choices of orthogonal matrices as in [17] for

the sake of simplicity of gradient calculations, and A(a, τ ),
B(τ ) represent the first and second part of the objective

function. Afterwards, the first part of the objective function

without the logarithmic barrier function is reformulated as

A =
∥

∥GHG− INgrid

∥

∥

2

F

= Tr
((

GHG− INgrid

) (

GHG− INgrid

))

= Tr
((

GHG− I
) (

GHG− I
))

= Tr
(

Nf−1
∑

ℓ=0

(

GH
ℓ Gℓ − I/Nf

)

Nf−1
∑

k=0

(

GH
k Gk − I/Nf

)

)

= Tr
(

Nf−1
∑

ℓ=0

(

GH
ℓ Gℓ

) (

GH
ℓ Gℓ

)

)

(11)

+Tr
(

Nf−1
∑

ℓ=0

Nf−1
∑

k=0,k ̸=ℓ

(

GH
ℓ Gℓ

) (

GH
k Gk

)

)

− Tr
(

2

Nf−1
∑

ℓ=0

(

GH
ℓ Gℓ

)

)

+
(

Ngrid

)

= f1 + f2 + f3 + f4

where k represents the discrete frequency index and INgrid

was called as I for convenience. Additionally, the equalities

∥X∥2F = Tr(XHX) and Tr(X +Y) = Tr(X) + Tr(Y) are

exploited in (11) while X and Y are suitably shaped matrices.

Since the gradient descent [18] algorithm is employed in

the optimization, the gradients of the objective function with

respect to transmission weights and time delays should be

formulated. Employing the chain rule of Wirtinger derivatives

[19], the gradient of the A with respect to the weights

is divided into parts with different gradient formulas and

formulated as

∂A

∂a
=

∂f1
∂a

+
∂f2
∂a

+
∂f3
∂a

+
∂f4
∂a

=
4
∑

m=1

Nf−1
∑

ℓ=0

(

(

∂fm
∂bℓ

)T
∂bℓ

∂a
+

(

∂fm
∂b∗

ℓ

)T
∂b∗

ℓ

∂a

)T

= 2
4
∑

m=1

Nf−1
∑

ℓ=0

Re

(

(

∂fm
∂bℓ

)T
∂bℓ

∂a

)T

,

(12)

and the gradient with respect to time delays considering the

gradient of the logarithmic barrier function turns out to

∂A

∂τ
+

∂B

∂τ
= 2

4
∑

m=1

Nf−1
∑

ℓ=0

Re

(

(

∂fm
∂bℓ

)T
∂bℓ

∂τ

)T

+ (1 � (1τmax − τ ))− (1 � τ ) ,

(13)

where (·)∗ is complex conjugate, � denotes element-wise

division, bℓ = GTℓ
pℓ,

∂fm
∂bℓ

∈ C
Ngrid×1 and the Jacobian

matrices of bℓ are ∂bℓ

∂a
, ∂bℓ

∂τ
∈ C

Ngrid×Nel .

The gradients ∂fm/∂bℓ for each index m are presented in

the following part. Firstly, f1 is rewritten as

f1 =

Nf−1
∑

ℓ=0

Tr
(

Diag (b∗
ℓ )G

H
Rℓ

GRℓ
Diag (bℓ ⊙ b∗

ℓ )

GH
Rℓ

GRℓ
Diag (bℓ)

)

,

(14)

with which ∂f1/∂bℓ is found to be

∂f1
∂bℓ

= 2diag
(

GH
Rℓ

GRℓ
Diag (bℓ ⊙ b∗

ℓ )

GH
Rℓ

GRℓ

)

⊙ b∗
ℓ ,

(15)

where diag(·) operator constructs a vector from the diagonal

elements of the argument matrix. Expanding the f2 as

f2 =

Nf−1
∑

ℓ=0

Nf−1
∑

k=0,k ̸=ℓ

Tr
(

Diag (b∗
ℓ )G

H
Rℓ

GRℓ

Diag (bℓ ⊙ b∗
k)G

H
Rk

GRk
Diag (bk)

)

,

(16)

the gradient ∂f2/∂bℓ can be determined as

∂f2
∂bℓ

=

Nf−1
∑

k=0,k ̸=ℓ

2
(

diag
(

GH
Rℓ

GRℓ
Diag (b∗

ℓ ⊙ bk)

GH
Rk

GRk

)

⊙ b∗
k

)

.

(17)

The third summand f3 and its gradient ∂f3
∂bℓ

is derived as

f3 = −2Tr
(

Nf−1
∑

ℓ=0

Diag (b∗
ℓ )G

H
Rℓ

GRℓ
Diag (bℓ)

)

(18)

∂f3
∂bℓ

= −2
(

diag
(

GH
Rℓ

GRℓ

)

⊙ b∗
ℓ

)

. (19)

Since the last part of the objective function f4 is constant, its

gradient

∂f4
∂bℓ

= 0. (20)
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Lastly, the Jacobian matrix of the bℓ with respect to the

transmission weight vector a and time delay vector τ can be

determined as

∂bℓ

∂a
= GTℓ

Diag
(

uℓ ⊙ e−jωℓτ
)

, (21)

∂bℓ

∂τ
= GTℓ

Diag
(

a⊙ uℓ ⊙
(

−jωℓe
−jωℓτ

))

. (22)

Having defined all the necessary quantities, the optimization

problem (10) is tackled via gradient descent algorithm [18]

an+1 = an − χa
n

∂

∂an
A(an, τn), (23)

τn+1 = τn − χτ
n

∂

∂τn

(A(an, τn) +B(τn)) , (24)

where χa
n and χτ

n are the adaptive step sizes in iteration n.

IV. PERFORMANCE EVALUATION

A. Simulation Parameters

The imaging area is chosen as the two-dimensional xz-plane

where the x-axis is selected for the transducer elements, and

xz-plane is selected for the measurement area as defined in

(2) and (3). The offset vector r0 = 15×10−3ez in meters, the

distances between the transducer elements dt,x = 625 µm, and

the distances between the grid points inside the measurement

area dx and dz are chosen as 312.5 µm. The number of

transducer elements Nel = 16, and the numbers of grid

points in the x and z directions of the measurement area are

Nx = Nz = 32. The reference speed of sound c0 = 1500
m/s, the relative spatial fluctuations γ(r) = 0.1 while r ̸∈ ζ,

and ζ is composed of an equidistant 2-D grid of 6 × 6 = 36
scattering locations at the indices (mx,mz) ∈ [7, 17, ..., 57]2,

cf. Figure 3, inspired by the setup in [10]. We consider a

sinc-shaped pulse, which is modulated to a center frequency

of fc = 5MHz, and Nf = 80 discrete frequencies from its

bandwidth are exploited. We choose a total recording time of

Trec = 80 µs which corresponds to a frequency resolution of

f0 = 1/Trec = 12.5 kHz in our simulation. Then, the set of

discrete frequencies fℓ = wℓ/(2π) is defined as

ξ = {fℓ ∈ R
+ : fℓ = fc + f0(ℓ− 0.5Nf),

0 ≤ ℓ < Nf}.
(25)

The discrete Fourier coefficients of the pulse are um,ℓ = 1 for

0 ≤ ℓ < Nf since the frequency response of the sinc pulse

gives a constant value.

Afterward, the simulated medium is insonified with different

transmission schemes, with the goal to estimate the sparse

spatial fluctuations. This task is formulated as in (9) and

tackled with fast iterative shrinkage-thresholding algorithm

(FISTA) [20] running 36 iterations which are equal to the

cardinality of the set ζ. The random perturbations η on the

receivers is multivariate complex Gaussian noise with the

distribution CN (0, cI) while c = 10−2.

The gradient descent algorithm in (23) and (24) is randomly

initialized such that the delays are uniformly distributed in the

range 0 ≤ τm < τmax where τmax = 20 µs and am ∼ N (0, 1).
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Fig. 2. Mutual correlation coefficient map of the column vectors of the G

matrix with a representative j-th column vector where arbitrary indices
jx = 12 and jz = 9 for three different scenarios (a) optimized CWs, (b)

random CWs and (c) plane wave.

The adaptive step sizes χa
n and χτ

n are updated in each iteration

n of the gradient descent by applying the Armijo rule [21].

Lastly, the results of the CWs with optimized transmission

delays and weights are compared with the results obtained for

PWI and randomly delayed and weighted CWs as similar to

approaches in [10]. In the case of PWI, the amplitude of the

m-th transmitter element am = 1 and the time delay for each

transmitter m is distributed as τmax − (Neldt,xsin(θ)/c0) +
mdt,xsin(θ)/c0 while the angle between planar wavefront

and ex is θ = π/3. For the randomly delayed and weighted

CWs, transmission delays and weights in each transducer are

assigned as 0 ≤ τm < τmax while τm is uniformly distributed,

and am ∼ N (0, 1). In both PWI and randomly delayed and

weighted CWs, the transmission weight vector is scaled as

a = (a/∥a∥2)∥aopt∥2 to make the transmit power equal for

three scenarios.

B. Simulation Results

In this section, the performance of the CWs with optimized

delays and weights is validated by comparing them against

PWI and the CWs with random delays and weights.

The first results quantify the coherence of the matrix G by

calculating the mutual correlation coefficient of its columns as

c(i, j) =
gH
i gj

∥gi∥2 ∥gj∥2
, (26)

where i, j are the indices of the reconstruction area in (2)

and the arbitrary constant j = jzNx + jx = 300 is chosen to

represent the mutual correlation coefficient where jz = 9 and

jx = 12. As shown in Fig. 2, the CWs with optimized delays

and amplitudes have lower mutual correlations compared to

pseudo-random CWs and PWI scenarios which shows that the
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Fig. 3. Reconstruction result comparison of the three different cases where
(a) optimized CWs, (b) random CWs and (c) plane wave.

optimization algorithm defined in (10) enables the reduction

of the coherence.

The subsequent result is related to the reconstruction accu-

racy of the spatial fluctuations obtained by the three different

approaches of choosing the transmitted signal parameters. It

can be noticed in Fig. 3 that the suggested method outperforms

the other cases in terms of reconstruction accuracy in the

conditions of the simulation model. However, the proposed op-

timization method still have difficulty to estimate the locations

of some points which can be related to the non-convex cost

function of the optimization problem defined in (10), since

the performance of the non-convex optimization is affected

by the initialization of the gradient-based algorithms. Another

reason for missing the exact scatterer locations is the additive

random perturbations in (8) which affect the FISTA algorithm

estimation performance.

V. CONCLUSION

In this paper, transmission delays and weights are optimized

in the Fourier domain to minimize the correlation between

distinct received signals when using ULAs for multi-channel

ultrasound imaging. Through explicit analytical expressions

of the gradients, an iterative gradient-based algorithm can be

applied to find the optimal parameters. The simulation results

demonstrate a reduction in the mutual correlations compared

to plane-wave imaging and a pseudo-random choice of delays

and weights. Additionally, the proposed method demonstrates

a better estimation accuracy in terms of scatterer localization

compared to the state-of-the-art, which indicates that the

sparsity-promoting algorithm benefits from a reduced correla-

tion between the received signals. The method can also easily

be adapted to multiple sequential pulse-echo measurements.

Besides, it requires no prior knowledge of the compressibility

values of the materials, and thus multiple signal reconstruc-

tions can be achieved once the optimized parameters are ob-

tained. As further work, the optimization problem may be val-

idated with experimental data gathered from NDT applications

following the adaption to more comprehensive mathematical

models without the omission of spatial amplitude absorption

and the assumption of pure homogenous measurement medium

outside the defects.
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