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Abstract—Solving tasks such as speaker recognition, music
classification, or semantic audio event tagging with deep learning
models typically requires computationally demanding networks.
General-purpose audio embeddings (GPAEs) are dense rep-
resentations of audio signals that allow lightweight, shallow
classifiers to tackle various audio tasks. The idea is that a
single complex feature extractor would extract dense GPAEs,
while shallow MLPs can produce task-specific predictions. If
the extracted dense representations are general enough to allow
the simple downstream classifiers to generalize to a variety of
tasks in the audio domain, a single costly forward pass suffices
to solve multiple tasks in parallel. In this work, we try to
reduce the cost of GPAE extractors to make them suitable for
resource-constrained devices. We use efficient MobileNets trained
on AudioSet using Knowledge Distillation from a Transformer
ensemble as efficient GPAE extractors. We explore how to obtain
high-quality GPAEs from the model, study how model complexity
relates to the quality of extracted GPAEs, and conclude that low-
complexity models can generate competitive GPAEs, paving the
way for analyzing audio streams on edge devices w.r.t. multiple
audio classification and recognition tasks.

Index Terms—General-purpose audio embeddings, audio rep-
resentation learning, low-complexity CNNs, HEAR benchmark

I. INTRODUCTION

Audio signals are high-dimensional and shallow represen-
tations, making them rarely useful for discriminative tasks
without additional transformations or processing with complex
models. Transforming raw audio signals into dense, low-
dimensional audio embeddings allows a lightweight classifier
to learn a task from limited amounts of labeled data [1]. If the
extracted audio embeddings are general, the raw audio signal
must only be processed once, while task-specific downstream
classifiers can produce the predictions for multiple tasks in
parallel.

Historically, handcrafted low-dimensional representations
were obtained by applying digital signal processing tech-
niques [2], [3] or audio signal transformations, such as cal-
culating Mel Frequency Cepstral Coefficients [4]. More re-
cently, deep neural networks (DNNs) trained on large datasets
have been able to extract more abstract, high-level repre-
sentations [5]–[7]. Architectures to extract dense audio rep-
resentations include Convolutional Neural Networks (CNNs)
processing 2D spectrograms [5], [6], [8], 1D-CNNs operating

The computational results presented were achieved using the Linz Institute
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directly on the waveform [9], [10] and Recurrent Neural
Networks (RNNs) for modeling temporal dependencies [11].
Recently, vision transformers [12], [13] have been ported to the
audio domain [14]–[18] showing excellent audio classification
and general-purpose audio extraction results. Models capable
of extracting high-quality audio representations are typically
trained on large datasets, such as ImageNet [19] for vision
or AudioSet [20] for audio. Models are either trained in a
supervised fashion [15], [21] using labeled datasets or in a
self-supervised way based on reconstruction [16]–[18], [22]
and contrastive losses [8], [23], [24]. In either regime, models
tend to be complex to capture detailed feature representations.

To assess the quality of a general-purpose audio embed-
ding extractor (GPAEE), benchmarks such as HEAR [1] and
HARES [25] have been introduced. The GPAEE generates
dense audio embeddings, while shallow classifiers are trained
to perform task-specific predictions based on them. HEAR [1]
and HARES [25] force the extracted embeddings to be uni-
versal by evaluating them on a variety of different audio
tasks concerning speech, music or environmental sounds.
Compared to fine-tuned models, generating predictions for
multiple tasks requires only one costly feature extraction and
several lightweight prediction steps. Reducing the computa-
tional demand of the GPAEE is an important step toward
fitting this framework on resource-constrained devices. Prior
work in this direction includes training and inference of self-
supervised audio representation learning models on mobile
devices [26] and AemNet [27], a model designed for efficient
end-to-end audio embedding extraction. While the latter is the
closest to our work, we use models with higher pre-training
performance, test features extracted from different positions in
the CNN, and evaluate on a much broader range of tasks.

In particular, we evaluate the performance of efficient
MobileNets [28] trained on AudioSet [20] using Knowledge
Distillation from a Transformer ensemble [29]1 as GPAEE on
the HEAR benchmark [1]. The contribution of this work is
(1) to investigate how well-performing general-purpose audio
representations can be obtained from a CNN, and (2) to
analyze how the model complexity is related to the quality
of extracted representations. As part of (2), we focus on low-
complexity models and compare the parameter and computa-
tional efficiency of our proposed models to other single model
GPAEEs.

1Pre-trained Models and Code are released on GitHub:
Pre-Trained Models: https://github.com/fschmid56/EfficientAT
HEAR evaluation: https://github.com/fschmid56/EfficientAT HEAR
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II. PRE-TRAINED MOBILENETS AS GENERAL-PURPOSE
AUDIO EMBEDDING EXTRACTORS

Efficient network design is a key enabler for deep learning
on edge devices and has been well-studied in prior work [28],
[30]–[33]. Efficient vision architectures, such as Efficient-
Net [32], [33] and MobileNet [28], [30], [31] have been ported
to the audio domain and show an excellent performance-
complexity trade-off [29], [34], [35]. In our experiments, we
use MobileNetV3 [28], an architecture designed for the appli-
cation on resource-constrained devices. The key building block
of MobileNets is the mobile inverted bottleneck block [31],
a factorized design that is more computation- and memory-
efficient than conventional convolutional layers. Squeeze-and-
Excitation layers [36] are integrated into some blocks to
recalibrate the filter responses and increase performance.

MobileNets pre-trained on AudioSet [20] using Knowledge
Distillation from Transformers achieve state-of-the-art audio
tagging performance, despite being much more efficient, in
terms of memory, computation and model complexity than
other models of similar performance [29]. We will scale the
MobileNets by the width of the network, meaning that the
number of layers stays constant, but the number of input and
output channels per layer are multiplied by a factor α. We
abbreviate MobileNet as mn and attach α. In this sense, mn10
denotes the baseline model using α = 1.0 and consisting
of 4.88M parameters. Setting α < 1 produces models with
reduced complexity while α > 1 increases the complexity.
Changing α modifies a model’s computational and parameter
complexity by roughly α2, allowing easy adaptation of the
model’s complexity for specific use cases [30].

Table I depicts the network structure of mn10 consisting
of an input convolution (in conv), 15 Blocks (B1-15) and
a classification head, including a 1x1 convolution + global
pooling (Clf 1), and two linear layers (Clf 2 and Clf 3)
to predict the 527 classes of AudioSet [20]. Scaling the
model width by α scales the size of extracted embeddings
accordingly, i.e. mn20 doubles also the numbers # out channels
and # SE bottleneck presented in Table I. In the following, we
describe how we obtain dense representations from this model.

A. High-Level Features

High-level features are the most abstract representations.
Corresponding to Table I, Clf 1 denotes the features result-
ing from global pooling, Clf 2 is the embedding from the
penultimate linear layer and Clf 3 are the logits predicted for
the 527 classes of AudioSet [20]. We denote the extracted
embeddings as H Clf1 through H Clf3. Very commonly, the
feature representations H Clf1 or H Clf2 are used as fixed-
size representations extracted from a CNN [21], [27].

B. Mid-Level Features

Mid-level features are extracted from the intermediate layers
of the model. We compare two types of mid-level features:
Squeeze-and-Excitation (SE) features extracted from the SE
bottleneck layer, and block features extracted from the block

Descriptor # out channels # SE bottleneck stride

in conv 16 - 2
B1 16 - 1
B2 24 - 2
B3 24 - 1
B4 40 24 2

B5, 6 40 32 1
B7 80 - 2

B8, 9, 10 80 - 1
B11 112 120 1
B12 112 168 1
B13 160 168 2

B14, 15 160 240 1
Clf 1 (conv, avg. pool) 960 - 1

Clf 2 (linear) 1280 - -
Clf 3 527 - -

TABLE I
MOBILENETV3 [28] NETWORK STRUCTURE AND SIZES USING A WIDTH

MULTIPLIER OF 1.0 (mn10). # OUT CHANNELS DENOTES THE NUMBER OF
CHANNELS AS THE OUTPUT OF BLOCKS, # SE BOTTLENECK DENOTES THE

BOTTLENECK SIZE OF THE SQUEEZE-AND-EXCITATION [36] LAYERS.

output feature maps using global average pooling. We experi-
mented with using max pooling instead of average pooling or
the sum of both, but we found that using only average pooling
yields the best results. The corresponding dimensionality of
extracted embeddings for each block of mn10 is listed in
Table I (# out channels, # SE bottleneck). We experimentally
observed that more abstract representations obtained from
higher-level blocks outperform lower-level representations on
most of the tasks. We choose to concatenate three higher-level
representations obtained from B11, B13 and B15 and one
lower-level representation obtained from B5 for both block
output and SE features. We ensured that removing any of
the aforementioned blocks decreases overall performance on
HEAR [1]. We denote these two types of embeddings as M B
and M SE.

C. Low-Level Features

We use mel spectrograms as input to our model. Mono
audio is sampled at 32 kHz and STFT is computed using
25 ms windows and a hop size of 10 ms. Log mel spec-
trograms with 128 frequency bands are computed and serve
as input to the models. Since global pooling removes time
and pitch information from mid-level features, we add pitch
information through low-level features by averaging the log
mel spectrograms over time and denote this set of low-level
features as L. Compared to pooling mid-level features only
over time [37], which increases the embedding size by a factor
that corresponds to the size of the frequency dimension in
the feature map, our approach uses a fixed-size vector of 128
numbers, independent of the model’s size.

D. Scene and Timestamp Embeddings

Common audio tasks require GPAEEs to generate em-
beddings for an entire audio clip (scene embeddings) or at
regular intervals (timestamp embeddings) [1]. To obtain scene
embeddings we split audio clips into 10 seconds frames and
average the resulting embeddings. For timestamp embeddings,
we chunk the raw audio waveforms into overlapping windows
of 160 ms with a hop size of 50 ms, similar to [38].
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III. EVALUATION OF AUDIO REPRESENTATIONS

A well-known testbed to assess the quality of extracted
audio representations is the Holistic Evaluation of Audio Rep-
resentations (HEAR) benchmark [1] launched as a NeurIPS
2021 challenge. HEAR comprises 19 tasks with short and long
time spans, covering different audio domains such as speech,
music and environmental sounds. In an attempt to enforce
universal audio representations, the range of downstream tasks
is extremely broad, ranging from detecting the location of a
gunshot to discriminating normal vs. queen-less beehives to
classifying emotion in speech. We refer the reader to [1] for
a detailed description of tasks and challenge models.

We use the HEAR-eval tool [1] to evaluate all models and
their extracted representations to be comparable to all submis-
sions to the HEAR 2021 challenge. The evaluation follows two
steps: firstly, embeddings for all tasks are generated using the
GPAEE and, secondly, a task-specific shallow MLP is trained
on the embeddings.

A. Evaluation Metrics

The HEAR tasks use different evaluation metrics, such as
Onset FMS, accuracy or mAP. To make the individual tasks
comparable, we adopt the procedure in [15] and normalize
each score by the maximum score achieved by a model in the
official HEAR 2021 challenge [1]. The normalization allows
to express the performance of each model on a task as a
percentage of the best-performing challenge system. We also
adopt the grouping of tasks into speech, music and general
sounds presented in [15].

Expressing the model performance in the benchmark as a
single number is avoided in [1] as it obscures nuances and
details of model performances on individual tasks. Following
this line, we present a detailed comparison between different
single models in Section IV-C. However, for studying indi-
vidual performance factors of our models, we average the
normalized scores across all tasks to derive a metric that can
be interpreted as the average percentage of best-performing
challenge systems.

IV. RESULTS

We first study which combinations of feature sets introduced
in Section II achieve the highest overall performance on
HEAR [1]. We then scale our models from 0.12 million
parameters to 68 million parameters and test how the quality of
extracted embeddings relates to the model complexity. Finally,
we compare our proposed models to other single models
evaluated on HEAR.

A. Importance of Low-, Mid- and High-Level Features

In this section, we compare the performance of low-, mid-,
high-level, and combined feature sets. We report all results
based on mn10 (4.88M parameters) and the evaluation metric
introduced in Section III-A.

Table II compares single feature sets in the first section and
the concatenation of the best performing single feature set
M B with other feature sets in the second section. Regarding

Feature Sets # dim General Music Speech All

L 128 55.64 88.28 43.12 64.38
M B 472 93.01 74.66 76.52 81.91
M SE 560 87.07 70.77 74.14 77.66
H Clf1 960 89.10 67.62 69.95 76.15
H Clf2 1280 85.80 65.87 64.67 72.90
H Clf3 527 73.50 55.86 42.31 58.79

M B+L 600 87.75 91.10 77.23 86.22
M B+M SE 1032 91.65 73.07 77.32 81.03
M B+H Clf1 1432 87.74 72.83 77.74 79.62
M B+H Clf2 1752 89.75 72.20 73.61 79.04
M B+H Clf3 999 76.88 61.92 53.90 65.32

TABLE II
COMPARING DIFFERENT LOW-, MID-, AND HIGH-LEVEL FEATURE SETS

BASED ON THE TASK CATEGORIES GENERAL, MUSIC, SPEECH AND
ACROSS ALL TASKS.

single feature sets, the logits H Clf3 containing information
on the 527 AudioSet classes perform the worst, showing that
these concepts are too specific to generalize well to a variety
of downstream tasks. The more general mid-level features
M B and M SE outperform all high-level features, indicating
that high-level features are too specialized in the pre-training
dataset domain. The low-level features L show no good overall
performance but achieve the highest performance in the Music
category, suggesting that pitch information is important but not
available in higher-level features. Overall, the features M B
perform the best across all categories except for Music. The
second section shows that only the concatenation of the low-
level features M B+L brings an additional performance boost,
as it adds the pitch information necessary to perform well in
music-related tasks. Concatenating other feature sets to M B
does not improve overall performance, indicating that M B
already covers a large range of information extracted by the
model from the raw audio signal.

B. Low-complexity Audio Embedding Extraction

In this section, we scale our models by adapting the width
scaling factor α and compare the performance of models
ranging from 0.12M (mn01) to 68M parameters (mn40). For
all models, we use the best-performing feature set (M B+L)
found in Section IV-A.

Parameter Complexity: Figure 2 compares the number
of parameters against the average normalized scores of our
width-scaled models (α ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0}) in
comparison to well-performing single models submitted to the
HEAR 21 challenge [1]. In addition, we include PaSST+ [38],
an improved version of PaSST [15] that uses a smaller hop
size and concatenates mel features with two receptive fields
of different sizes for timestamp embeddings.

On the low-complexity end, our proposed models show
an excellent parameter-performance trade-off. The smallest
model mn01 performs worse than larger MobileNets and
is outperformed by BYOL-S [39] (CNN trained in a self-
supervised fashion) and PaSST+ [38] (Transformer trained on
AudioSet [20] labels). However, with 120k parameters, it con-
tains a fraction of the parameters of the other models and still
provides audio embeddings of very competitive performance.
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Fig. 1. Comparing well-performing single models: PaSST and PaSST+ [15], [38] (supervised, Transformers), wav2vec2 [9] (self-supervised, Transformer),
BYOL-S [39] and OpenL3 [6] (self-supervised, CNNs), and RedRice/Xiaomi EffNet-B2 [32] and PANNs CNN14 [21] (supervised, CNNs) to mn01, mn10
and mn30. We compare the distributions of normalized scores per task category between the models. The models are ordered according to the median value
of the normalized scores across all tasks in descending order from left to right.

Fig. 2. Comparing width-scaled (α ∈ {0.1, 0.2, 0.5, 1.0, 2.0, 3.0, 4.0})
MobileNets to other well-performing single models with respect to the
parameter-efficiency. Circles/Crosses denote CNNs/Transformers.

The performance of our models increases sharply until
mn10 (4.88M parameters), with more complex models being
only slightly better. mn30 reaches the highest performance,
indicating that scaling up our models further is hitting a
performance limit.

Computational Complexity: Complementary to the model
size, the computational complexity at inference time specified
in terms of multiply-accumulate (MAC) operations is an
important factor for deploying models on resource-constrained
devices. The computational demand of our models ranges from
20M (mn01) over 540M (mn10) up to 8B (mn40) MACs per
10 seconds of processed audio signal. In comparison to other
models (PaSST: 128B, CNN14: 20B, EffNet-B2: 900M, Byol-
S: 780M), our pre-trained MobileNets are computationally
lightweight. For example, mn01 could run real-time inference
on an embedded processor supporting single-cycle MAC and
operating in low MHz range, such as a Cortex-M4.

C. Comparison to Single Models
Figure 1 compares mn01, mn10 and mn30 to other well-

performing single models submitted to HEAR based on the
normalized score distributions for the categories Speech, Music
and General. In the Speech category, our models are outper-
formed by BYOL-S [39] and wav2vec2 [9], two models that
are specialized in speech tasks. However, mn10 and mn30
outperform all models not pre-trained on speech datasets.
The Music category is dominated by our models with mn01
exceeding the top challenge score on the task Beijing Opera
Percussion (recognize the type of percussion instrument) and
mn30 setting new top scores for the tasks Mridingham Tonic
(classify tonics), Mridingham Stroke (classify strokes) and
GTZAN Genre (classify genre). PaSST+ achieves the best
results in the General category, closely followed by our
models. mn10 sets a new top score on the task Vocal Imitations
(retrieve sound using vocal imitation) and mn30 exceeds the
top score on ESC-50 (environmental sound classification).
Overall, mn30 and mn10 compare favorably against all other
single models, being among the best models in each category.
The tiny model mn01 performs comparable to EffNet-B2 [32],
OpenL3 [6] and PANNs CNN14 [21], and slightly worse than
PaSST [15].

V. CONCLUSION

In this work, we used recently introduced highly effi-
cient state-of-the-art audio tagging models [29] pre-trained
on AudioSet [20] as low-complexity general-purpose audio
embedding extractors. We tested which feature sets generalize
best to a variety of downstream tasks and found that mid-level
features perform best while adding low-level features brings in
the necessary pitch information to master music-related tasks.
Based on these findings, we varied the model complexity and
showed that our scaled models are more parameter efficient
and less computationally demanding than previously proposed
models. We propose a tiny model mn01 that extracts audio
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embeddings of competitive quality for the application on edge
devices. The larger mn10 is still very compact and compares
favorably against other single models submitted to the HEAR
challenge and, finally, the larger mn30 outperforms mn10 and
beats the top HEAR challenge test scores on 4 tasks.

REFERENCES

[1] J. Turian, J. Shier, H. R. Khan, B. Raj, B. W. Schuller, C. J. Steinmetz,
C. Malloy, G. Tzanetakis, G. Velarde, K. McNally, M. Henry, N. Pinto,
C. Noufi, C. Clough, D. Herremans, E. Fonseca, J. H. Engel, J. Salamon,
P. Esling, P. Manocha, S. Watanabe, Z. Jin, and Y. Bisk, “HEAR: holistic
evaluation of audio representations,” in NeurIPS 2021 Competitions and
Demonstrations Track. PMLR, 2021.

[2] Z. Liu, Y. Wang, and T. Chen, “Audio feature extraction and analysis for
scene segmentation and classification,” J. VLSI Signal Process., 1998.

[3] F. Eyben, M. Wöllmer, and B. W. Schuller, “Opensmile: the munich
versatile and fast open-source audio feature extractor,” in Proceedings
of the 18th International Conference on Multimedia. ACM, 2010.

[4] B. Logan, “Mel frequency cepstral coefficients for music modeling,” in
ISMIR, 1st International Symposium on Music Information Retrieval,
2000.

[5] S. Hershey, S. Chaudhuri, D. P. W. Ellis, J. F. Gemmeke, A. Jansen,
R. C. Moore, M. Plakal, D. Platt, R. A. Saurous, B. Seybold, M. Slaney,
R. J. Weiss, and K. W. Wilson, “CNN architectures for large-scale audio
classification,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, ICASSP. IEEE, 2017.

[6] J. Cramer, H. Wu, J. Salamon, and J. P. Bello, “Look, listen, and
learn more: Design choices for deep audio embeddings,” in IEEE
International Conference on Acoustics, Speech and Signal Processing,
ICASSP. IEEE, 2019.

[7] A. van den Oord, Y. Li, and O. Vinyals, “Representation learning with
contrastive predictive coding,” CoRR, 2018.

[8] D. Niizumi, D. Takeuchi, Y. Ohishi, N. Harada, and K. Kashino,
“BYOL for audio: Self-supervised learning for general-purpose audio
representation,” in International Joint Conference on Neural Networks,
IJCNN. IEEE, 2021.

[9] A. Baevski, Y. Zhou, A. Mohamed, and M. Auli, “wav2vec 2.0: A
framework for self-supervised learning of speech representations,” in
Annual Conference on Neural Information Processing Systems, NeurIPS,
2020.

[10] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals,
A. Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu,
“Wavenet: A generative model for raw audio,” in The 9th ISCA Speech
Synthesis Workshop. ISCA, 2016.

[11] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. C.
Courville, and Y. Bengio, “Samplernn: An unconditional end-to-end
neural audio generation model,” in 5th International Conference on
Learning Representations, ICLR. OpenReview.net, 2017.

[12] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words: Trans-
formers for image recognition at scale,” in 9th International Conference
on Learning Representations, ICLR. OpenReview.net, 2021.

[13] K. He, X. Chen, S. Xie, Y. Li, P. Dollár, and R. B. Girshick, “Masked
autoencoders are scalable vision learners,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, CVPR. IEEE, 2022.

[14] Y. Gong, Y. Chung, and J. R. Glass, “AST: audio spectrogram trans-
former,” in Interspeech, 22nd Annual Conference of the International
Speech Communication Association. ISCA, 2021.
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