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Abstract—In this paper, a new approach for Hyperspectral
Image Super Resolution (HSI-SR) using a combination of 3D
Convolutional Neural Networks (3DCNNs) and an attention
mechanism, mainly Squeeze-and-Excitation (SE), is proposed.
The devised method aims to generate High Resolution HSI (HR-
HSI) from a single Low Resolution HSI (LR-HSI), an approach
known as Single Image SR (SISR), which is a challenging task
in remote sensing applications. 3D-SRCNN is utilized to extract
and learn the spatial and spectral features of the input image,
while the SE mechanism is employed to enhance the network’s
ability to model the interdependencies between the spectral
bands. The proposed model is evaluated on ROSIS Pavia Uni-
versity and AVIRIS Botswana HSI datasets. Experimental results
demonstrate that the proposed 3D-SE-SRCNN outperforms other
methods in terms of both quantitative metrics and visual quality.
The implementation of the proposed model is provided in this
repository: https://github.com/NourO93/SISR Library

Index Terms—Hyperspectral, super resolution, convolutional
neural networks, squeeze and excitation

I. INTRODUCTION

Hyperspectral Imaging (HSI) has witnessed a great increase
in popularity since the 1990s. Unlike Multispectral Images
(MSI), panchromatic images (PAN), and natural images (i.e.
RGB), HSI capture hundreds of narrow and contiguous spec-
tral bands across the electromagnetic spectrum, typically from
the visible to the near-infrared range. Each pixel in an HSI
represents a spectrum of reflectance values at different wave-
lengths, providing a unique fingerprint of the materials in the
scene. Thus, HSI provide an advantage because they contain
information not only about the intensity of light, but also
about its wavelength. This enables researchers to study and
analyze the spectral properties of a scene, which eases image
processing tasks, such as classification and object detection.
Consequently, HSI is used in a wide range of applications
[1], such as remote sensing, geology, agriculture, and medical
imaging. For example, in remote sensing, HSI can be used
to study vegetation health, mineral mapping, and Land Cover
Land Use (LCLU).

However, the spatial resolution of HSI is often limited
due to sensor tradeoff that allows capturing images either
with high spectral resolution or high spatial resolution. As
a result, HSI suffer from spectral mixing due to their low
spatial resolution, which hinders utilizing the full potential of
what HSI can offer. HSI Super Resolution (HSI-SR) aims to

overcome this limitation by generating a High Resolution HSI
(HR-HSI) from one or more Low Resolution (LR) images.
This is achieved by exploiting the spatial correlation between
different spectral bands and using advanced image processing
techniques, such as Deep Learning, particularly Convolutional
Neural Networks (CNNs). In the context of remote sensing,
HSI-SR is a critical tool for enhancing the spatial resolution of
HSI, enabling researchers to extract more detailed and accurate
information from their data. Thus, researches constantly strive
to enhance HSI while preserving their spectral signature from
any distortion.

This paper deals with HSI spatial enhancement through
Single Image Super Resolution (SISR). This is a notoriously
ill-posed problem considering that it attempts to construct
an HR-HSI from a single LR-HSI. 3D-SRCNN, which was
previously devised in [2], has proven its efficiency in en-
hancing HSI while minimizing spectral distortions. It is also
more lightweight compared to other CNNs that serve the same
purpose. However, the network only utilizes 3D convolution,
and does not fully exploit the spectral-spatial characteristics
that can aid in enhancing HSI. Squeeze-and-Excitation (SE)
[3] mechanism has not been explored in the context of HSI-
SISR, despite being utilized for HSI classification. This study
explores the use of SE in HSI-SISR through injecting it in
3D-SRCNN to exploit band dependencies, effectively creating
3D-SE-SRCNN. The proposed network is evaluated using
Peak Signal-to-Noise Ratio (PSNR), Structure Similarity Index
Measurement (SSIM), and Spectral Angle Mapper (SAM), in
addition to qualitative inspection. The rest of the paper is
organized as follows: Section II discusses the existing work in
the literature, Section III presents the mathematical framework
of the targeted problem, Section IV explains the proposed
methodology in details along with the dataset utilized in this
study, Section V demonstrates and analyzes the results, finally,
Section VI summarizes and concludes the paper.

II. RELATED WORK

According to [4], HSI-SR is broadly categorized into two
classes: Fusion and SISR. Fusion methods often require aux-
iliary information, such as a supplementary MSI or PAN
that is precisely co-registered with the LR-HSI, which is
impractical. On the other hand, SISR methods do not require
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extra information, which offers convenience. Nonetheless, this
convenience comes at a cost, as the amount of available infor-
mation to reconstruct HR-HSI is very limited, which makes
HSI-SISR a notoriously ill-posed problem and one of the most
popular open problems. The earliest SISR method dates back
to Bicubic interpolation [5]. Although it is now considered
outdated, it is still commonly used in commercial software
and as an initial step in many advanced algorithms [6].
Since 2014, CNNs dominated the field of image processing.
Research evidence shows that 2D-CNNs are not an adequate
solution to process HSI, as they ignore the spectral aspect
of this type of images. 3D-CNNs overcome this problem,
and this was demonstrated in 2017 when Mei et al [7].
Devised Fully Connected CNN (FCNN) to enhance the spatial
resolution of HSI, which showed promising results in terms
of PSNR, SSIM, and SAM. In 2021, the idea of extending
traditional 2D-CNNs that exhibit good performance on MSI
to 3D was proposed. The simplest known SISR network is the
Super Resolution CNN (SRCNN). The network architecture is
modified by adjusting the filters’ sizes to reduce the artifacts
around image borders that result from padding. The network is
then extended to 3D, which shows better performance than 3D-
FCNN. Another 3D network called 3D-RUNet was devised in
[8], which utilizes encoder-decoder architecture to reconstruct
HR-HSI from LR-HSI. However, the network’s depth renders
it vulnerable to overfitting, particularly given the limited size
of the publicly available HSI datasets. Thus, a correct balance
between network depth and dataset size must be achieved.
Other works in this area include [9]–[12].

Some research studies argue that 3D operations alone are
not enough to exploit the spectral-spatial correlations of HSI
[13]. This can be solved by combining 2D-3D operations to
extract both spatial and spectral details. This can be seen
in HSI classification CNNs, especially the ones that utilize
attention mechanism. One way of implementing attention
mechanism is known as Squeeze-and-Excitation (SE), which
has proven to be efficient in HSI classification [14]. So far,
this mechanism has not been explored in HSI-SISR. As 3D-
SRCNN is a lightweight network that still has room for
improvement, embedding SE into 3D-SRCNN while adding
2D elements into the network is an approach worthy of
exploration.

III. PROBLEM STATEMENT

For a groundtruth HR-HSI denoted Y ∈ RM×N×C , LR-
HSI denoted X ∈ Rm×n×C is defined as follows:

X = DGY + E , (1)

where m << M and n << N . D is the downsampling
operation, G is the blurring kernel, and E is the additive noise.
In this study, LR-HSI is generated synthetically by applying
Gaussian blur and using nearest neighbor interpolation as
a downsampling operation. This is a common approach for
generating LR-HSI according to [10].

HR-HSI can be estimated by minimizing the Forbenius
norm of the difference between Y and the estimated HR-HSI
denoted Ŷ over all bands C, as follows:

Ŷk = argmin
Yk

∥DGYk −Xk∥2F , k = 1, . . . , C (2)

The complexity of an HSI cube makes this a highly non-
linear optimization problem, which will be solved using the
proposed model explained in the next section.

IV. METHODOLOGY

The architecture of the proposed model is shown in Figure 1.
It comprises two main parts; 3D-SRCNN and the SE block.
the details of these parts are explained in the next subsections.

A. 3D-SRCNN

3D convolution spans all three directions of an image;
height, width, and bands. Therefore, it is an adequate solution
to accommodate spectral context for HSI, as standard 2D-
CNNs fail to preserve spectral fidelity. 3D convolution at
position (x, y, z) can be expressed with the following equation:

F(x,y,z) = ReLU

(
M∑
i=1

N∑
j=1

C∑
k=1

K(i,j,k)X(x+i,y+j,z+k) + b

)
(3)

where F(x,y,z) is the output feature, X(x+i,y+j,z+k) is the
input that includes the original pixel and the neighboring
pixels within the offset range (i, j, k), K(i,j,k) is the weight
at location (i, j, k) that corresponds to the input, b is the bias,
and f is the activation function. According to the literature,
ReLU is the most suitable activation function for CNNs
[15]. Convolution causes dimensionality reduction if the input
image is not padded. This can be rectified using Transpose
Convolution (TC) layer, also known as deconvolution layer,
which is described as follows:

F ′
(x,y,z) = ReLU

(
M∑
i=1

N∑
j=1

C∑
k=1

X(i,j,k)H(x+i,y+j,z+k) + b

)
(4)

The input in this case is used in place of the kernel, and
it is convolved with a grid H of the desired size, larger than
the input, where the known input values are spread across the
grid and the values in between are set to zero.

The architecture of 3D-SRCNN is simplistic and consists
of 3 layers:

• Patch extraction: which extracts features from X, and it
is represented by Equation 3.

• Non-linear mapping: which increases the resolution of the
extracted features F by utilizing TC as in Equation 4.

• Reconstruction: which is a convolution layer that con-
structs the final Ỹ.

The overall equation of 3D-SRCNN that maps X to Ỹ is
described as follows:

Ỹ = SRCNN(X) = F (F ′(F (X))) (5)
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Fig. 1: Proposed 3D-SE-SRCNN for LR-HSI enhancement. The network consists of three 3D convolution layers, followed by
an SE block.

B. Squeeze-and-Excitation

Squeeze-and-Excitation (SE) is a module that allows neural
network models to selectively focus on informative features
by adaptively recalibrating the feature map band-wise. It was
first introduced by Hu et al. in 2018 [3]. The SE module
consists of two main components: a squeeze operation and
an excitation operation. The squeeze operation reduces the
number of bands in the feature map by computing global
average pooling, which aggregates spatial information across
each band. The excitation operation then learns to weigh each
band based on its importance, using a small neural network
with a gating mechanism. Specifically, it applies a sigmoid
activation function to the output of a fully connected layer that
takes the squeezed features as input. This produces a band-
wise scaling factor that can be applied to the original feature
map, enhancing the informative bands and suppressing the less
informative ones.

For any given transformation Ftr maps the input feature
map Ỹc ∈ RM×M of a particular band C to the descriptor zc.
The Squeeze procedure, denoted Fsq(.), uses global average
pooling, which converts Ỹ to a column vector of size 1×1×C.
The squeeze function is thus defined as:

zc = Fsq(Ỹc)
=

1

M ×N

M∑
i=1

N∑
j=1

Ỹc(i, j) (6)

The excitation procedure is used to automatically determine
the significance of each feature, amplifying those that have
a bigger impact reconstructing the details of the HSI while
suppressing insignificant features. The excitation function can
be expressed as:

s = Fex(z,W ) = σ(g(z,W )) = σ(W2ReLU(W1z)) (7)

where σ is the Sigmoid activation function, W1 ∈ RC
r ×C and

W2 ∈ RC×C
r are the two fully connected layers, W1 is the

dimensionality reduction layer with a dimensionality reduction
ratio of r. The Sigmoid function suppresses the final output of
the excitation process to a value between zero and one. The
resulting output s is scaled to match the expected final height,
width, and number of bands to obtain the final Ŷ.

V. EXPERIMENTS AND ANALYSIS

A. Hyperspectral Data and Implementation Details

The first dataset used in this study is Pavia University
dataset, which is a commonly used HSI dataset in the remote
sensing and machine learning communities [16]. It was col-
lected by the Reflective Optics System Imaging Spectrometer
(ROSIS) sensor over Pavia, Italy, and contains 103 bands with
a spatial resolution of 1.3 meters per pixel.

The second dataset is Botswana, which is another widely
used HSI dataset that was collected by the NASA EO-1
satellite using Hyperion sensor in 2001 [16]. This dataset
consists of 1476× 256 pixels with 242 spectral bands with a
spatial resolution of 30 meters. Uncalibrated and noisy bands
that cover water absorption features were removed, keeping
only 145 bands that will be included in this study.

Since training CNNs requires a large amount of data, the
datasets are divided into patches of 64 × 64 to increase the
number of images for training and testing. The number of
resulting patches for training, validation, and testing is 37,
4, and 4, respectively for Pavia University, and 76, 8, and
8, respectively, for Botswana. is Additionally, each patch
is degraded using Gaussian blur and down-scaled by the
required scale factor using nearest neighbor [17], [18], as
explained in Section III. The resulting patch is considered as
the Low Resolution HSI (LR-HSI), which will be enhanced
and compared to the original ground truth HSI. In this study,
all the experiments are performed on scale factors ×2 and ×4.

B. Results

The devised network 3D-SE-SRCNN seen in Figure 1
was developed, trained, and tested using Python’s Tensorflow
library. The performance is compared against Bicubic [5], 3D-
FCNN [7] and 3D-SRCNN [2] in terms of PSNR, SSIM, and
SAM. PSNR and SSIM measure the spatial quality of the
image, while SAM measures the spectral fidelity. PSNR should
be as high as possible, while SSIM should be close to 1, and
SAM should be close to 0. All the networks have been trained
and tested within the same environment to ensure fairness of
comparison. Table I shows a summary of the testing results
obtained from all the aforementioned networks. For Pavia
University dataset, the proposed network shows superiority
in terms of PSNR, SSIM, and SAM across scale factors ×2
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Ground Truth Bicubic 3D-FCNN 3D-SRCNN 3D-SE-SRCNN

Fig. 2: Top row: Qualitative comparison of the images predicted by each approach. Bottom row: Visualization of the MSE
images between each predicted result and the ground truth.

and ×4. A similar observation can be made for Botswana
dataset, which shows more impressive results compared to
Pavia University due to the former being relatively bigger
than the latter. Due to space limitation, only Botswana results
are demonstrated in Figure 2. The top row shows the results
of constructing band 50 using the proposed model and other
benchmark methods, while the bottom row shows a visualiza-
tion of the Mean Squared Error (MSE) between the predicted
image the ground truth one. It can be observed that 3D-SE-
SRCNN shows less errors and rectified some of the artifacts
seen in the results obtained from other methods. Figure 3
shows a plot of the spectral signature of the pixel at position
(61, 63), which was chosen randomly from Botswana dataset.
For clarity, signatures of spectral response between bands 50
to 80 are shown. The plot clearly indicates that the signature
produced by 3D-SE-SRCNN closely follows the ground truth
more accurately than other methods. All of the quantitative
and qualitative results prove that the proposed network was
successful at enhancing HSI visually while simultaneously
preserving the spectral fidelity. This demonstrates that SE
mechanism indeed boosts the results of HSI-SISR networks,
which is the goal of this study.

VI. CONCLUSION

In conclusion, this paper proposes a 3D-SE-SRCNN as
an SISR technique for the purpose of enhancing HSI. The
experimental results have demonstrated the effectiveness of the
proposed method in generating high-quality HSI from a single
LR-HSI. This approach has surpassed other methods used in
this research in terms of PSNR, SSIM, SAM, as well as visual
quality, indicating the potential of the proposed method for
enhancing remote sensing applications. The future direction of
this research includes exploring the use of different network
architectures other than 3D-SRCNN to further improve the
performance of the proposed method. Additionally, it is worth
exploring the performance of 3D-SE-SRCNN on different
degradation models in order to enhance HSI in a blind manner.

Fig. 3: Spectral signature of a pixel taken randomly at position
(61, 63) from Botswana data cube. 3D-SE-SRCNN signature
follows the Ground Truth one more closely compared to other
methods.

TABLE I: Results summary of various methods’ performance
on enhancing Pavia University and Botswana datasets in terms
of PSNR (dB), SSIM, and SAM (deg).

PaviaU BotswanaMethod x2 x4 x2 x4
29.266 24.857 32.831 29.595
0.846 0.6412 0.873 0.743Bicubic
5.563 8.578 3.075 4.743

30.940 25.526 34.716 31.106
0.916 0.696 0.915 0.8023D-FCNN
7.607 9.667 1.985 3.139

31.534 25.542 35.17 31.236
0.923 0.695 0.922 0.8023D-SRCNN
5.789 9.032 1.812 3.320

31.794 25.641 35.546 31.335
0.927 0.700 0.925 0.8053D-SE-SRCNN
5.557 8.922 1.621 3.032
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