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Abstract—Time-of-Flight cameras, especially the ones featur-
ing sensors built upon macro-pixel architectures, are generally
characterized by lower resolutions than other imaging modalities.
In this work, we propose a practical single-frame super-resolution
scheme to surpass this limitation by exploiting the architecture of
a laboratory-designed macro-pixel ultra-high-speed image sensor.
In addition, we propose a two-step sparsity-aware greedy algo-
rithm for the recovery of the signal in the time (depth) domain.
The main contribution of our algorithm is the introduction of
a preliminary screening step to define a set of feasible support
candidates in which we replace the demodulation functions, the
assembly of which yields the sensing matrix, by the theoretical
binary codes they are built upon. We empirically demonstrate
that our algorithm improves the recovery performance with
respect to Order Recursive Matching Pursuit for sparsity ≤ 2.

Index Terms—Coded imaging, Compressive Sensing, macro-
pixel, super-resolution, Time-of-Flight.

I. INTRODUCTION

Time-of-Flight (ToF) cameras are generally characterized

by lower resolutions than other imaging modalities, such as

RGB (color) cameras. This gap is even bigger when the depth

sensor is built upon a macro-pixel structure, as the one we

are considering in this paper [1], [2]. In this paper, we aim to

surpass these limitations and propose:

1) A practical single-frame spatial super-resolution (SR)

framework which permits us to reliably work in the

sub-pixel range.

2) An original Compressive Sensing (CS) oriented algo-

rithm which allows for the recovery of the depth and

intensity of each sub-pixel, reaching temporal (depth)

SR, and the reduction of the depth estimation error with

respect to Order Recursive Matching Pursuit (ORMP)

[3] and prior work [1].

II. THEORETICAL BACKGROUND

A ToF camera produces a 3D model of the surrounding

environment by exploiting the opacity of most objects or,

analogously, the sparsity of the signals representing them. In

cameras based on indirect-ToF, the sensor-to-target return-trip
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time, equivalent to the distance between them, is obtained

from samples of the correlation of the reflected signal with

m ≥ 1 demodulation functions a⃗i ∈ R
n implemented in the

ToF camera. In Pulse-based (PB)-ToF [4], [5], the emitted

signal consists of a train of short light pulses, and a⃗i is

initially designed as a custom (0,1)-binary sequence a⃗0,i with

a⃗0,i ∈ R
n0 subsequently discretized in nsteps, such that

n = n0 × nsteps, and filtered accounting for the real response

of the pixel. This filtering operation can be expressed as the

convolution of two shift-invariant functions, such as the code

and the Instrument Response Function (IRF) [4], [5]. The

assembly of [⃗ai]
m
i=1 yields a sensing matrix AAA ∈ R

m×n [4],

and the scalar products of the scene response function x⃗ with

[⃗ai]
m
i=1 yield the measurement vector y⃗ ∈ R

m. As m ≪ n,

we encounter an under-determined system of equations, that

translates into a constrained ℓ0-minimization problem (1) when

the inherent sparsity (or compressibility) of x⃗ is considered.

ˆ⃗x = argmin
x⃗

∥x⃗∥0, s. t. y⃗ = AAA · x⃗ (1)

In order to reconstruct x⃗ from y⃗, classical greedy algorithms,

such as Orthogonal Matching Pursuit (OMP) [6] or ORMP [3],

generate a discrete probability distribution as a result of the

scalar product of the residual of y⃗ and the normalized columns

of AAA, and, then, estimate the support of the signal upon

it. Therefore, the design of AAA [7]–[10] plays a fundamental

role on the reconstruction success. Since every column of AAA

represents a distinct fraction of the time (depth) domain, the

optimal AAA would be the one which attained the lowest inter-

column coherence µ = max
(

|⃗ai⊺ ·⃗aj |
∥a⃗i∥2∥a⃗j∥2

)

with 1 ≤ i ≤ n,

1 ≤ j ≤ n and i ̸= j. In this sense, Tropp [6] demonstrated

that exact retrieval can be guaranteed if µ < 1
2s−1 , being s

the sparsity.

III. METHODOLOGY

A. Spatial Super-resolution: From Macro-pixel to Sub-pixel

Range using the Sub-pixel Intensity Maps.

The resolution of a depth camera is often augmented on a

multi-frame framework making use of a set of images from

other imaging modalities whose sensors are characterized by

a larger number of pixels [11], on a single-frame framework

based on deep learning approaches [12], [13], or considering
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CS techniques together with spatial light modulators (SLMs)

[14]–[16] such as digital micro-mirror devices (DMD). For

instance, in [14] DMD masks are implemented together with

Block Compressive Sensing (BCS) to allow for spatial SR. In

addition, they divided the sensor read-out into various blocks

to avoid data overload during transmission, and designed the

read-out mode to make it compatible with BCS. Differently,

we do not consider CS techniques in the spatial domain, which

would require additional hardware, but exploit the particular

architecture of the macro-pixel, i. e., the arrangement of the

sub-pixels within the macro-pixel and the fact that each sub-

pixel comprises mSP = 4 taps or integration channels [1]. We

increase the resolution up to the sub-pixel range, by perform-

ing a demosaicing guided by the high resolution intensity map

III . Therefore, the increase of the spatial resolution is fixed (×4)

and given by the size of the sub-pixels and the macro-pixel.

Moreover, our algorithm does not yield an excessive increase

of computational load with execution times ∼ O
(

10−1 ms
pix

)

.

Thus, our methodology is a valuable tool to increase the

spatial resolution of depth sensors built upon a macro-pixel

architecture to reach sub-pixel SR.
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Fig. 1. ToF sensor architecture: each macro-pixel consists of four sub-pixels
which, in turn, contain four integration channels or taps.

As shown in Fig. 1, our sensor consists of an array of M×N

macro-pixels, being M = 94 and N = 106. Each macro-

pixel comprises nSP = 4 sub-pixels (SPi with i = 1, 2, 3, and

4), which, in turn, contain mSP = 4 integration channels or

taps. This permits the generation of m ≤ 16 demodulation

functions per macro-pixel. The spatial SR framework (from

macro- to sub-pixel resolution) is summarized in Algorithm 1

and consists of two steps:

• Calculation of the high-resolution intensity map used

in the resolution transfer: We generate one Low-

resolution (LR) intensity map IIILRSPt
for each of the

sub-pixels by calculating ∥y⃗LR
(j,k)

SPt
∥2 with 1 ≤ t ≤

nSP, 1 ≤ j ≤ M and 1 ≤ k ≤ N , respectively.

Then, we re-map them as per the location of each sub-

pixel within the macro-pixel, and combine them III =
M

(

IIILRSP1
, IIILRSP2

, IIILRSP3
, IIILRSP4

)

, with III ∈ R
2M×2N .

• Generation of m SR raw images via bilateral fil-

tering: We perform an up-scaling of the raw images

A
(

YYY LR
i

)

with 1 ≤ i ≤ m using bi-cubic interpolation,

yielding Ỹ̃ỸY i ∈ R
2M×2N . Then, we apply a bilateral

filter over them [17], the weights of which are calculated

as w(ty,tx) = e
−

(

(ty−j)2+(tx−k)2

2σ2
K

−
(I

(ty,tx)
−I(j,k))2

2σ2
I

)

, with

(ty, tx) ∈ Ω(j,k), 1 ≤ j ≤ 2M , and 1 ≤ k ≤ 2N . As a

result, YYY i ∈ R
2M×2N , with 1 ≤ i ≤ m, raw frames are

generated.

Algorithm 1: Spatial super-resolution scheme.

Data: YYY LR
l with 1 ≤ l ≤ m, Ω(j,k), σK , σI

Results: YYY l with 1 ≤ l ≤ m

for j = 1 : M do

for k = 1 : N do

for t = 1 : nSP do

îLR
(j,k)

SPt
= ∥y⃗LR

(j,k)

SPt
∥2

end

end

end

III = M
(

IIILRSP1
, IIILRSP2

, IIILRSP3
, IIILRSP4

)

for l = 1 : m do

ỸYY l = A
(

YYY LR
l

)

for j = 1 : 2M do

for k = 1 : 2N do

y
(j,k)
l =

∑

(ty,tx)∈Ω(j,k) ỹ
(ty,tx)

l
·w(ty,tx)

∑

(ty,tx)∈Ω(j,k) w(ty,tx)

end

end

end

B. Time Super-resolution: Exploiting the Prior Knowledge of

the Sensing Matrix.

In [18], a deep multi-modal generative reconstruction model

from direct-ToF single photon avalanche diode (SPAD) data

was proposed to capture the depth-intensity cross-correlations,

and achieve time SR. In addition, the memory footprint is

reduced by projecting the raw data onto a randomly-generated

matrix. Differently, in our work y⃗ is already constructed upon

the projection of x⃗ onto
[

a⃗j
]n

j=1
yielding a Compression Ratio

(CR) CR = m
n
= 0.0625. However, the only use of AAA during

the support estimation may lead to a catastrophic failure, when

the index of the identified support element largely differs

from the correct one, due to the presence of highly-correlated

columns (µ → 1) far apart from each other, due to the impact

of the pixel response function. We add a preliminary screening

step accounting for the knowledge of the theoretical codes the

demodulation functions are generated upon, the assembly of

which yields A0A0A0. This improves the recovery performance.

Also, our scheme only requires one single iteration to retrieve

any s-sparse signal, yielding computational times of the same

order of magnitude as ORMP1 for s > 1. The SR in the

time (depth) domain, described in Algorithm 2, consists of

two steps:

• Initial screening using custom (0,1)-binary codes: We

perform an scalar product of y⃗(j,k) =
[

y
(j,k)
i

]m

i=1
, with

1 ≤ j ≤ 2M and 1 ≤ k ≤ 2N , with respect to the

1The obtained recovery times for s = 2 in our experiments are t̄ORMP =
0.22ms and t̄ours = 0.66ms.
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normalized columns of AAA0 ∈ R
m×n0 and generate a

discrete probability function g⃗
(j,k)
0 = Â̂ÂA⊤

0 · y⃗(j,k). We

apply an initial thresholding Hκ·s

(

g⃗
(j,k)
0

)

with κ = 2.

Then, we estimate K ≥ s disjoint sets of feasible

candidates,
[

Ω
(j,k)
0,l

]K

l=1
being s the sparsity of the signal

being retrieved.

• Signal reconstruction using real pixel responses:

We generate K discrete probability functions g⃗
(j,k)
l =

Â̂ÂA⊤

Ω
(j,k)
0,l

· y⃗(j,k) with Â̂ÂA ∈ R
m×n being n = n0 · nsteps.

Then, we calculate g⃗
(j,k)
max =

[

max
1≤t≤|g⃗

(j,k)
l

|

(

gt
(j,k)

l

)

]K

l=1
composed by the maxima of the discrete probability

functions of each group and the corresponding support

Ω
(j,k)
max = ∪K

l=1







ω1(j,k)

0,l + argmax
1≤t≤|g⃗

(j,k)
l

|

(

gt
(j,k)

l

)







. We re-

trieve the vector ˜⃗r(j,k) which is given by the elements of

Ω
(j,k)
max corresponding to the s largest entries of g⃗

(j,k)
max and

multiply it by the grid size ∆r to obtain the corresponding

distance. Finally, we sort ⃗̃r(j,k) and generate R̃RRq distance

maps with q = 1 : s.

In addition, we apply a variational denoiser [19] D
(

R̃RRi

)

to yield s RRRq distance2 maps.

Algorithm 2: 2-step coarse-to-fine greedy retrieval.

Data: s,κ,nsteps,AAA0,AAA, yi with 1 ≤ i ≤ m

Results: z̃q with q = 1 : s
Initialize: K = 0
g⃗0 = Hκ·s

(

Â̂ÂA⊤
0 · y⃗

)

Ω̃0 = supp (g⃗0)
for t = 1 : |Ω̃0| do

if (ω̃t+1
0 − ω̃t

0) > 1 then
K = K + 1

end

βt = K
end

for l = 1 : K do

Γl = {t : βt = l, s.t. 1 ≤ t ≤ |Ω̃0|}

Ω0,l = {1 + nsteps · (min
(

Ω̃0,Γl

)

− 1) :

(nsteps ·max
(

Ω̃0,Γl

)

)}; Ω̃0,Γl
= {Ω̃0[i]}i∈Γl

g⃗l = Â̂ÂA⊤
Ω0,l

· y⃗

gmax,l = max
1≤t≤|g⃗l|

(gtl )

Ωmax,l = ω1
0,l + argmax

1≤t≤|g⃗l|

(gtl )

end

Ω̃ = supp (Hs (g⃗max))
⃗̃r = sort

(

[

ωmax,ω̃q
·∆r

]s

q=1

)

2z(j,k) = r(j,k) sinϕ(j,k) sin θ(j,k), being ϕ(j,k) and θ(j,k), the obser-
vation angles of pixel (j, k) from the cartesian x-axis (lateral) and y-axis
(vertical), respectively.

Pannel: z=13m

Scene1: Single Return Scene2: MPI 

Doll: z=8m

Pillar: z=4m

Pylon: z=6m

Diffuser: z=0.83m

Panel: z=4.13m

Fig. 2. Experimental setup for the evaluation of the spatio-temporal super-
resolution scheme: scene1 (left column) for single-return assessment contains
four targets placed at various distances up to 13m, whilst scene2 (right
column) for the evaluation of multi-path interference consists of a translucid
diffuser and an opaque panel separated by 3.5m.

C. Pre-processing Steps: Preventing Discrepancies between

the Theoretical and Real Sensing Matrices.

We identify and amend various possible causes of discrep-

ancy between the (0,1)-binary codes and the demodulation

functions which may lead to a detriment on the performance of

our algorithm. Firstly, there may exist a misalignment between

the columns of the sensing matrix and the corresponding ones

in the theoretical codes due to the non-instantaneous status

change in the pixel control signals. This can be corrected

by calculating the slope of the phase difference between both

signals in the frequency domain [20], [21], and performing a

complex rotation of the codes. Secondly, there may be differ-

ences in modulation capacity of the sub-pixels (sets of rows

of the sensing matrix) which can be corrected by performing

an equalization of a⃗i and y⃗(j,k), pre-multiplying both by a

diagonal matrix DDD with dii = ∥a⃗i∥
−1 with 1 ≤ i ≤ m.

This becomes of special relevance for Sliced OMP [4] in

very noisy environments and low-light conditions, in which

a preliminary set of measurements representing disjoint depth

sub-domains, is used to restrict the signal support. Thus, the

differences in modulation capacity need to be reduced to a

minimum to allow for a correct determination of the signal

support. Finally, high-frequency noise may be present on the

measured demodulation functions. This can be removed if a

low-pass filter matching the pixel bandwidth is applied to a⃗i.

IV. EXPERIMENTAL EVALUATION

A. Hardware Constrains on Demodulation Functions

The configuration of our camera allows for the acquisition

of up to m = 16 measurements per pixel on a single shot.
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TABLE I
EVALUATION OF THE SPATIO-TEMPORAL SUPER-RESOLUTION SCHEME FOR scene2 (MULTI-PATH INTERFERENCE)

Methodology Target Histogram Max. Mean(z) σz ∆z RMSE∆z

Up-scaling + Panel 4.220 m 4.236 m 0.277 m 3.405 m (+0.105 m) 0.324 m
2-step Diffuser 0.815 m 0.811 m 0.115 m

Spatial SR + Panel 3.850 m 3.834 m 0.8258 m 3.055 m (-0.245 m) 0.813 m
ORMP Diffuser 0.795 m 0.775 m 0.260 m

Spatial SR + Panel 4.215 m 4.240 m 0.297 m 3.390 m (+0.090 m) 0.342 m
2-step Diffuser 0.825 m 0.810 m 0.112 m

Prior work [1] - - - - 3.465m (+0.165m) 0.310m

This prevents the appearance of motion artifacts due to relative

displacement between acquisitions [22], [23]. However, the

design of the demodulation functions must follow a number

of rules derived from the layout of the sensor and hardware

capabilities. The amount of charge transferred to the taps may

become uncertain if more than one tap is on simultaneously

for a multi-tap charge modulator. Also, the mdeg = 4 taps do

not have a dedicated drain and there may exist saturation and

leaks to other taps if none of the taps of the sub-pixels are on.

These two considerations translate to a number of non-zero

elements per column, ndeg = 4, distributed in such a way

that no more than one non-zero element coexists in each of

the sub-pixels. We consider the codes and the corresponding

pixel demodulation functions in [1], as for both µ < 1.

B. Experimental Setup

We empirically evaluate the reconstruction methodology

using the setup presented in Fig. 2. We make use of the

complementary metal oxide semiconductor (CMOS) ultra-high

speed (UHS) ToF sensor [1] together with a laser emitter

of wavelength λ = 660 nm and a measured Full Width

at Half Maximum FWHM = 2.55 ns. Since the maximum

range in our setup, given by the illumination system, is

rmax = 16m, we can use up to 256 bits in 8−bits increments

yielding n0 = 32. We discretize each of the n0 elements in

nsteps = 10 sub-divisions to ensure µ < 1, yielding n ≤ 320
samples, i. e., a grid size ∆r = 0.05m. The raw images

employed in this analysis are averaged over nreal = 100
realizations. The scene1 consists of several opaque targets

placed at different distances with respect to our camera, being

the maximum range rmax = 16m. For the evaluation of Multi-

Path Interference (MPI), we use the data from scene2 [1] and

perform a shift of the origin of the coordinate system [1] as

per the actual distances between the targets and the sensor.

The scene2 consists of one opaque panel at zpanel = 4.13m
plus a diffuser at zdiffuser = 0.83m.

C. Experimental Results

We evaluate the performance of the spatial SR scheme with

respect to bi-cubic interpolation for s = 1 by presenting

the depth and intensity maps using the proposed two-step

recovery algorithm in the depth domain for scene1. Table II

presents the average depth reconstruction error, which is given

by the difference between the average retrieved depth and

the corresponding theoretical depth for each of the targets.

Although the results presented are limited by the experimental

setup constrains and the unavailability of 3D ground truth (GT)

for scene1 (s = 1), they allow for a fair comparison with prior

work [1]. We observe an increase of the level of detail in the

recovered targets, especially in dark areas (see inset in Fig. 3).

Also, we find that the introduction of the bilateral filter helps

to reduce the overall level of noise, the variability with respect

to [1], and the number of spurious outliers in dark areas.

We choose a variation of this algorithm, ORMP, as a base

case to allow for comparison with previous works which make

use of time gating or coded demodulation [24], [25] which

use OMP as a baseline for their validations. We observe

an improvement of the depth accuracy on the former one.

Table I compares the performance of the proposed scheme

for the recovery of 2−sparse signals (scene2). We obtain a

slight improvement of estimation of the relative distance when

introducing our spatial SR scheme. We find that our technique

correctly detects the depths of both targets, presents smaller

depth recovery errors than ORMP and than reported in prior

work [1], and improves the estimation of the relative distance

(∆z) between both targets, given by the difference of the

histogram maxima of each depth map, although the variability

of the results is marginally increased. This variability could be

decreased if µ is further optimized.

TABLE II
EVALUATION OF THE SPATIO-TEMPORAL SUPER-RESOLUTION SCHEME

FOR scene1 (SINGLE RETURN PER OBSERVED DIRECTION)

Absolute depth estimation error

Method Panel Pillar Pylon Doll

Up-scaling+2-step 0.073 m 0.067 m 0.010 m 0.003 m

Spatial SR + ORMP 0.177 m 0.036 m 0.047 m 0.089 m

Spatial SR +2-step 0.074 m 0.066 m 0.010 m 0.002 m

Prior work 0.048 m 0.126 m 0.071 m 0.058 m

V. SUMMARY AND CONCLUSIONS

In this work, we have described a practical scheme for

the pre-processing of the raw images of a single-shot ToF

camera to achieve spatial sub-pixel super-resolution. We have

shown that our methodology outperforms the results using bi-

cubic interpolation for s = 1, especially in poorly illuminated

areas. Also, we have introduced an algorithm to recover a

3D scene for s ≤ 2, which enhances the depth resolution

of the ToF sensor and overcomes ORMP and [1], with a

similar computational cost. Our prospective research includes

a detailed evaluation of two-step coarse-to-fine greedy re-

trieval together with the implementation of adaptive or optimal
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Fig. 3. Evaluation of spatio-temporal super-resolution scheme for scene1:
depth and intensity maps recoverd via bi-cubic interpolation + two-step
recovery (top), spatial super-resolution + ORMP (center), and spatial super-
resolution + two-step recovery (bottom).

demodulation coding schemes [4] to improve the recovery

performance, especially under low-light conditions and MPI,

and on techniques for depth denoising based on deep learning

to reduce the execution times.
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