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Abstract—Hyperspectral Image (HSI)s cover hundreds or
thousands of narrow spectral bands, conveying a wealth of spatial
and spectral information. However, due to the instrumental errors
and the atmospheric changes, the HSI obtained in practice are
often contaminated by noise and dead pixels(lines), resulting in
missing information that may severely compromise the subse-
quent applications. We introduce here a novel HSI missing pixel
prediction algorithm, called Low Rank and Sparsity Constraint
Plug-and-Play (LRS-PnP). It is shown that LRS-PnP is able to
predict missing pixels and bands even when all spectral bands
of the image are missing. The proposed LRS-PnP algorithm is
further extended to a self-supervised model by combining the
LRS-PnP with the Deep Image Prior (DIP), called LRS-PnP-DIP.
In a series of experiments with real data, It is shown that the LRS-
PnP-DIP either achieves state-of-the-art inpainting performance
compared to other learning-based methods, or outperforms them.

Index Terms—Hyperspectral Imaging, Image Inpainting, Plug
and Play Denoiser, Self-Supervised Learning.

I. INTRODUCTION

In hyperspectral imagery, sensor failures and malfunctions
of the HSI acquisition system may result in missing pix-
els/lines or some spectral bands, significantly hindering the
subsequent processing of observed HSI [1]. Hyperspectral
inpainting is the task of filling in the missing areas with
plausible contents. However, the inpainting of HSIs is a more
challenging task than RGB images as each pixel to be filled
in is a complex vector with rich spatio-spectral information.
Traditional methods such as [2], [3], [4] and [5] either fail
when the whole spectral bands of pixels are missing, or their
performance is severely compromised if there are a large
number of missing pixels. In this work, we treat hyperspectral
inpainting as a special case of the reconstruction problem,
whose objective is to recover the ground truth from the
degraded/masked incomplete images. The low rankness and
sparsity of the underlying clean HSI are used here as the
priors during reconstruction. The sparse representation (SR)
and low rankness (LR) priors have been successfully applied
in a wide range of hyperspectral imaging applications such as
classification [6], denoising [7], and un-mixing [8]. Recently,
researchers have found that the missing spectrum of the HSIs
can be predicted through learning on a large dataset [9] or
learning from the image itself [10]. The latter is an extension
of the Deep Image Prior (DIP) [11] applied to HSIs, achieving
the state-of-the-art performance. In [11], authors reveal that

the structure of a generative network is sufficient to capture
plenty of low-level image statistics prior to any learning. The
well-designed CNN networks have been tested on a wide
range of tasks such as image denoising, super-resolution and
image inpainting, showing promising results which are even
competitive to the state-of-the-art deep models trained on large
datasets. The “free of external training data” property of the
DIP, makes it well-suited for HSI inpainting. The very recent
works in [12], [13] raised the point that some trained or
untrained neural networks can be directly plugged into the iter-
ative solver to achieve better reconstruction accuracy. Keeping
this Plug-and-Play (PnP) idea in mind, one may design a
better HSI inpainting algorithm by taking advantage of both
the traditional and deep learning techniques. Considering the
high computational cost of end-to-end training on extensive
HSI data, it is here proposed to use DIP, a self-supervised
framework that is free of external training data.

A. Contribution

This paper aims to develop an effective HSI inpainting
algorithm that enjoys the specific learning capability of deep
networks, called inductive bias, but does not need any external
training data, i,e. self-supervised learning. Specific contribu-
tions are the following:

• A novel self-supervised HSI inpainting method, called
Low Rank and Sparsity Constraint Plug and play (LRS-
PnP), which is presented to solve the most challenging
scenarios where the whole spectral bands are missing.

• The use of deep neural networks in replacing the rank
constrained-optimisation problem, showing the potential
of DIP in learning intrinsic low-rank characteristics of the
HSIs.

• A deep hyperspectral prior-based model which better
exploits the intrinsic characteristics of HSI data, for
achieving state-of-the-art performance.

• Extensive experiments on real data to verify the superior-
ity of proposed LRS-PnP and LRS-PnP-DIP algorithms
over existing inpainting solutions.

The rest of paper is organized as follows: section II in-
troduces the proposed framework, section III provides the
implementation details and experimental setups, in section IV,
the results are discussed. Finally, section V concludes the
paper.
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II. PROPOSED METHOD

The HSI inpainting task can be interpreted as the recon-
struction of the clean image X from its noisy and incomplete
measurement Y , in the presence of additive noise N and
masking operator M :

Y = M{X}+N (1)

The clean image X ∈ Rq(q = nr × nc × nb), where nr, nc

are the spatial dimension of image, and nb stands for the
total numbers of spectral bands. The operator M : Rq → Rq

is the binary mask, with 0 representing the missing pixel and
1 representing the observed and valid pixel. Therefore M
can be presented with a diagonal matrix that has only one
per row, which we note it by M. N is the additive Gaussian
noise of appropriate size. Specifically, M is often given.
The formulation (1) is a linear system which can be written as:

y = Mx+ n (2)

Where x,y,n are the vectorized forms of X,Y,N , respec-
tively, and M is a diagonal matrix. We first introduce an
operator Pi(x) that extracts each i-th patch from the image
x. Pi(x) may cover only the valid pixels or may include
the missing pixels depending on the size of Pi(·). We apply
the sparse representation on each image patch Pi(x). The
inpainted image x∗ can be obtained by solving the following
optimization problem:

(x∗,α∗) = argmin
x,α

γ∥y −Mx∥22 +wlr∥x∥∗ +ws∥α∥1

s.t. x = Φα
(3)

The first term is the data fidelity term, which we weigh with
the parameter γ. Due to the ill-posed nature of estimating x
from y only using data fidelity term, the solution is often not
unique. For this reason, we introduce another two ”priors” to
regularize the inpainting problem, namely low rank and spar-
sity constraints. The second term penalizes the solution x to be
of low rank, which is often used as the surrogate for the rank
minimization problem. The third term constrains the missing
pixels to be generated from the subspace approximated by
the valid pixels. Similarly, we weigh these two terms with
parameters wlr and ws. The sparse representation problem is
solved with a known dictionary Φ that is learned only from the
noisy and incomplete pixels, or it is a sparsifying transform.
By adopting the augmented Lagrangian and introducing the
auxiliary variable u [14], problem (2) can be rewritten as:

(x∗,α∗) = argmin
x,α

γ∥y −Mx∥22 +wlr∥u∥∗ +ws

∑
i

∥αi∥1.

+
µ1

2
∥
∑
i

(Pi(x)− Φαi) +
λ1

µ1

∥22

s.t. x = u
(4)

Where λ1 and µ1 are the Lagrangian multiplier and penalty
term, respectively. With the help of the alternating direction
method of multipliers (ADMM), problem (4) can be solved

by the sequential updates of three variables: α, u and x.
1) Fixing u and x, and updating α:

αk+1 = argmin
α

µk
1

2

∑
i

∥(Pi(x
k) +

λk
1

µk
1

)− Φαi∥22

+ws

∑
i

∥αi∥1
(5)

which is a patched-based sparse coding problem which can
be solved using iterative solvers. In our algorithm, we adopt
the PnP-ISTA [15], which has shown promising results over
conventional ISTA [16]. Denote the first term in equation (5)
as f =

µk
1

2

∑
i ∥(Pi(x

k) +
λk

1

µk
1
) − Φαi∥22. The whole process

can then be replaced by an off-the-shelf denoiser D acting
on the gradient of f , as it is proposed in [15]. Every single
iterate takes the form:

αk+1 = D(I −∇f)(αk) (6)

2)Fixing α and x, and updating u:

uk+1 = argmin
u

wlr∥u∥∗ +
µ2

k

2
∥(xk +

λ2
k

µk
2

)− u∥22 (7)

which can be solved by the Singular Value Thresholding
(SVT) algorithm. The element-wise soft shrinkage is applied
to the singular value of (xk +

λk
2

µk
2
), as follows,

uk+1 = SV T (xk +
λk
2

µk
2

) (8)

In the proposed LRS-PnP-DIP algorithm, update step of (8)
is replaced by a untrained randomised weight neural network
fθ(z), where θ represents the network weights to be updated,
and the input z is set to be xk +

λk
2

µk
2

. i,e, the latent image
from the previous iterations:

uk+1 = fθ(x
k +

λk
2

µk
2

) (9)

3) Fixing α and u, and updating x:

xk+1 = argmin
x

γ∥y −Mx∥22 +
∑
i

∥(Pi(x) +
λk
1

µk
1

)− Φαk+1
i ∥22

+
µk

2

2
∥(x+

λk
2

µk
2

)− uk+1∥22
(10)

Closed-form solution for x exists as follows:

xk+1 = (γMTM+ µk
1

∑
i

PT
i Pi + µk

2I)
−1

(γMTy + µk
1

∑
i

PiΦα
k+1
i + µk

2u
k+1 −

∑
i

Piλ
k
1 − λk

2I)

(11)
4) Lagrangian and penalty terms updating:

λk+1
1 = λk

1 + µk
1(x

k+1 − Φαk+1)

λk+1
2 = λk

2 + µk
2(x

k+1 − uk+1)
(12)
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µk+1
1 = ρ1µ

k
1

µk+1
2 = ρ2µ

k
2

(13)

The proposed Low-Rank and Sparsity Plug-and-Play (LRS-
PnP) inpainting model is presented in Algorithm 1.

Algorithm 1 (LRS-PnP) Algorithm
Require: masking matrix: M, noisy and incomplete HSI: y,

learned dictionary: Φ. denoiser: D, max iteration: Itmax.
Output: inpainted HSI image X .

1: Initialization: λ1,λ2,µ1,µ2,ρ1,ρ2.
2: while Not Converged do
3: for i = 1 : Itmax do:

αk+1 = D(I −∇f)(αk)

4: uk+1 = SV T (xk +
λk

2

µk
2
)

5: update x by ((11)).
6: update Lagrangian parameters and penalty terms.
7: end while

By replacing the SVT with DIP fθ, we end up with an
extension of the LRS algorithm, denote as LRS-PnP-DIP, is
presented in Algorithm 2:

Algorithm 2 (LRS-PnP-DIP) Algorithm
Require: masking matrix: M, noisy and incomplete HSI: y,

learned dictionary: Φ. denoiser: D, max iteration: Itmax.
DIP: fθ

Output: inpainted HSI image x.
1: Initialization DIP parameters, λ1,λ2,µ1,µ2,ρ1,ρ2.
2: while Not Converged do
3: for i = 1 : Itmax do:

αk+1 = D(I −∇f)(αk)

4: update θ in DIP, with the target y and input xk +
λk

2

µk
2

.
5: update x by (11).
6: update Lagrangian parameters and penalty terms.
7: end while

III. IMPLEMENTATION DETAILS

We test the proposed inpainting model on the Chikusei
airborne hyperspectral dataset, which was taken by Headwall
Hyperspec-VNIR-C imaging sensor [17]. The hyperspectral
test image has 128 spectral bands, with each 36x36 pixels.
The size of the dictionary Φ is 1296x2000 which was learned
only based on the noisy and incomplete HS image. All images
are corrupted with Gaussian noise with the fixed noise strength
σ = 0.12. The mask M is applied to all the spectral bands.
We use BM3D and Non-local-Mean (NLM) as the plug-
and-play denoiser. The implementation of DIP follows the
same structures as in Deep Hyperspectral Prior paper [10]. To
prevent over-fitting in DIP, we use the early stopping criterion
proposed in [18], which automatically detects the near-peak
PSNR point using windowed moving variance (WMV). We set
ws/wlr to be 1 and γ to be 0.5. Note that the choice of γ is
highly related to the noise level of Y . If the noise level is low,
the recovered image X should be close to noisy observation Y ,

then parameter γ should be large, and vice versa. For ADMM
parameters, λ1 and λ2 are set to be 0, µ1, µ2 are set to be
1, and ρ1, ρ2 are set to be 1, meaning a fixed update step.
We use Adam optimizer, and the learning rate is set to be 0.1.
We adopt two widely used indicators: Mean Signal-to-Noise
Ratio (MPSNR) and Mean Structural Similarity (MSSIM), to
evaluate the performance in all experiments.

IV. EXPERIMENTAL RESULTS

The performance of proposed algorithms are compared with
the existing traditional methods LRTV [3], and FastHyIn [2],
and learning-based method DIP [11], DeepRED [19] and PnP-
DIP [20]. The numerical results are reported in Table I and II .
For the DIP, DeepRED, PnP-DIP and the proposed LRS-PnP-
DIP, the same U-net in [10] was used as the backbone. For
the fairness of comparison, all associated parameters with U-
net are kept fixed, including the noise standard deviations and
regularization strength. The MPSNR and MSSIM are obtained
through running algorithms for 20 times on the same test
image. For comparison with FastHyIn and LRTV, 25% of the
pixels were randomly masked using a uniform distribution for
the missing bands. The inpainting performance is shown in
Figure 1.

Methods Input LRTV [3] FastHyIn [2] LRS-PnP
MPSNR↑ 32.745 37.655 40.876 41.263
MSSIM↑ 0.292 0.720 0.902 0.935

TABLE I
PERFORMANCE COMPARING WITH TRADITIONAL METHODS

It shows that LRS-PnP algorithm can generate a more con-
sistent and realistic spectrum in the missing region compared
to the learning-based methods. LRS-PnP captures local struc-
tures, such as a sudden change in the materials, e,g. see the first
image. In contrast, methods such as DeepRED and PnP-DIP
tend to generate much smoother contents in the non-missing
areas. However, there are severe distortions and artefacts of
the missing regions. We believe this is due to the nature of
DIP which mainly focuses on learning global features and
characteristics. For this reason, it is often used with other
regularizers such as Total Variation (TV) to preserve more
details [21]. It is worth mentioning that the inpainting result
of the double deep prior algorithm LRS-PnP-DIP is visually
and qualitatively better than those of other inpainters.

V. CONCLUSION

The novel hyperspectral inpainting algorithms called LRS-
PnP and its extension self-supervised LRS-PnP-DIP which can
effectively handle missing pixels from noisy and incomplete
HS images in the most challenging scenario where the whole
spectrum bands are missing. The new methods exploit spectral
and spatial redundancy of HSIs and require no training data
except, the test image. A comparison of LRS-PnP and LRS-
PnP-DIP with the state-of-the-art algorithms is conducted on a
real HS image, leading to the conclusion that LRS-PnP yields
similar while LRS-PnP-DIP yields better performance against
other learning-based methods, while not using a pre-training
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Methods Input DIP [11] DeepRED [19] PnP-DIP [20] LRS-PnP(Ours) LRS-PnP-DIP(Ours)
MPSNR↑ 31.569 41.247(±0.62) 41.35(±0.32) 41.52(±0.35) 40.802 42.385(±0.28)
MSSIM↑ 0.268 0.937(±0.004) 0.942(±0.001) 0.947(±0.002) 0.918 0.954(±0.002)

TABLE II
PERFORMANCE COMPARING WITH LEARNING-BASED METHODS. THE AVERAGE AND VARIANCE OVER 20 SAMPLE GENERATION IS SHOWN HERE

Fig. 1. Comparison of our solution and other learning-based inpainting algorithms. From left to right: (1) clean image, (2) input image, (3) Deep Image Prior,
(4) DeepRED, (5) PnP-DIP, (6) proposed LRS-PnP, and (7) proposed LRS-PnP-DIP. All images are visualized at band 80.

step using a large set of HS images. As the future work, one
direction is to accelerate the proposed algorithms to achieve a
cost-efficient and real-time HSI inpainting. Another direction
of interest is to explore and optimize the training of DIP,
especially when it is used in the loop, as mentioned in a
lines of DIP-related works [12], [13], [20], [22], [23]. The
other direction is to theoretically show the convergence of the
algorithm, which we left for a future work.
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