
GIPS: Geometry-Inspired Passive ToF Sensing for
3D Depth Reconstruction

Faisal Ahmed†, Miguel Heredia Conde†‡, and Paula López Martı́nez‡
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Abstract—The motivation for this work lies in the ubiquitous
lighting infrastructure that surrounds us, which has been repur-
posed as a medium for optical wireless communication (OWC).
This technology has enabled the development of passive 3D
imaging. However, the fundamental problem with passive Time-
of-Flight (ToF) imaging is the unknown source location, which
generates a chicken and egg problem that renders passive ToF
unusable in practice. In this work, we propose computational
methods to solve this problem. We present a novel algorithm
with a gradient descent approach for jointly estimating the
source location and retrieving the correct depth information
of the scene. In each iteration, the bistatic configuration is
used as a basic framework while seeking local planarity to
constrain the source location. The performance of our algorithm
is evaluated in terms of source location estimation error and
depth reconstruction error for two usual plane orientations
through numerical simulations. Simulation results confirm the
ability of the method to jointly retrieve the scene depth and
source location. This work has huge potential for next-generation
wireless networks, e. g., 6G, and paves the way towards 3D
reconstruction in multiple practical applications.

Index Terms—Bistatic passive sensing, gradient descent, depth
estimation, and blind source localization.

I. INTRODUCTION

3D source localization in passive imaging is a challenging
task. Prior work relies on the assumption that the source
location is known, which does not hold in general [1], [2].
In this context, source localization can be viewed as a chicken
and egg problem, where the position of the source cannot be
determined unless the geometry of the scene is known and
the depth image cannot be retrieved correctly without the 3D
source position. Blind source localization refers to the problem
of determining the position of the illumination source without
any prior knowledge [3]. To this end, we propose a novel
algorithm that leverages the sensing potential of a bistatic setup
and geometric priors to effortlessly determine the position of a
3D source. This work paves the way for passive Time-of-Flight
(ToF) imaging to be operational in real applications requiring
3D depth reconstruction.
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Recently, interest in passive 3D imaging has been stimulated
by our previous work [1], [2], which exploited existing optical
wireless communication (OWC) infrastructure. The quest for
3D depth reconstruction has become a prevalent topic of
research in the computer vision and signal processing commu-
nities, with potential applications in autonomous cars, robots,
and indoor sensing. Our work aligns well with the global trend
of “re-purposing optical paradigms” that has engulfed several
scientific disciplines (e. g., indoor sensing) in recent decades
[4]. We exploited an array of photonic mixer device (PMD)
correlating pixels in this work, which perform the mixing
between the received optical signal and the reference one [5].

State-of-the-art ToF-based 3D cameras use co-located il-
lumination sources to extract depth by exploiting time or
phase delay information. Differently, the illustration in Fig. 1a
presents an alternative approach, known as a bistatic config-
uration that exploits existing OWC infrastructure and yields
a passive modality. Fig. 1b demonstrates the resulting 3D
ellipsoidal model where PE, PT, and PR are the 3D locations
of the emitter, target, and receiver, respectively. The ellipsoid
has two foci, such that the sum of the distances from any point
on the surface to the two foci is constant. For each pixel, the
solution set lies on this 3D ellipsoid as, demonstrated in Fig.
1b. Our previous work [1] requires knowledge of the emitter
location PE to estimate the correct distance to target, which is
not generally available. In this work, we show how geometrical
cues can be used to estimate PE from the measurements.
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Fig. 1. (a) Bistatic Passive-ToF imaging configuration. (b) For each pixel,
the solution set lies on a 3D ellipsoid.

In 3D reconstruction, scene priors are valuable in addition to
geometric cues. The human visual system makes unconscious
assumptions about the 3D object based on common observa-
tions, such as its simplicity, symmetry, and planarity [6]–[8].
To streamline the convex optimization problem, we exploit
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scene priors. More specifically, we demonstrate the method
leveraging local horizontal and vertical planarity, because this
is the most common case in practice, referred to as the
Manhattan world. Prior knowledge of the scene, particularly
the Manhattan world assumption, has been demonstrated to
enhance 3D reconstruction tasks as reported in [9]. In practice,
any complex structure can be approximated reasonably well
by using small planar components. Indoor scenes (walls and
floors) [10] and self-driving cars (road surfaces) are two
examples of such applications.

Key Contributions: This work demonstrates an approach
for solving the blind source localization in bistatic passive ToF
imaging that follows the principles of [1].

1) We present a novel passive framework that combines
geometric prior and optimization methods for jointly
estimating the target and source position.

2) We report how blind source location plays a key role in
the passive modality for accurate depth reconstruction.

3) We propose a novel bistatic passive gradient descent
(BP-GD) algorithm that uses an optimization approach
to reconstruct a 3D image in a passive ToF setting with
an unknown source location.

II. RELATED WORK

3D Active Imaging: Conventional depth imaging methods,
such as structured light [11] and ToF imaging [12], are active
sensing techniques that acquire depth information by capturing
an image using a camera and an integrated illumination source.
While these methods have made significant progress in recent
times, however, they still face key challenges. Structured-light
sources cannot be used in some applications, e. g., autonomous
drones, owing to cost and power constraints. Despite the
obvious advantages, active ToF imaging has its own set of
problems, such as power-hungry sources, background distur-
bance, and temperature-dependent measurements. Unlike re-
cent approaches, we propose a passive modality that is suitable
for power-constrained applications that exploit opportunity
illuminators, e. g., visible light communication (VLC) sources,
for distilling depth information. The latter is embedded in
reflections in traditional active ToF imaging methods, where
the illumination source is integrated within the sensor. It has
been argued in [1], [2] that passive ToF imaging requires a
receiver-only sensor in order to obtain depth reconstruction.

3D Passive Imaging: Many approaches have recently lever-
aged photon delays to infer depth information in passive
imaging. The photon bunching phenomena in thermal light
can be leveraged to retrieve depth, as discussed in [13], which
builds on the earlier works of Hanbury Brown and Twiss
[14]. This approach has certain downsides, such as the need
for optical conditioning in the sensing pipeline and the cost
and bulkiness of the system itself. Photometric stereo (PS)
imaging is a prominent example of passive imaging [15]. PS
imaging, pioneered by Woodham in 1980 [16], uses a fixed
camera perspective and multiple light directions to capture
3D images of an object. Conventional PS approaches assume
light directions and intensities are constant, known or unknown

among all frames. PS imaging takes the source position fixed
with respect to the scene. However, there is another catch: this
technique can only be used in a completely dark environment.
The artifacts in the surface reconstruction problem are caused
mainly by the discontinuity or the sudden shift in intensity
between objects and depth leading to a zero value. [17] tackles
the problem of the hidden source position. This framework
uses aperture masking interferometry for passive imaging,
which is limited by signal-to-noise ratio (SNR) considerations,
and exploits costly ultrafast detectors, as PS does not require
ultra detectors [15].

None of the existing approaches solves the entangled prob-
lem of simultaneously reconstructing the scene geometry and
the source location in passive 3D imaging. Even supposing
a known initial position of the source, in dynamic systems,
this could change over time. Thus, relying on a known
source location is not a realistic assumption in general. Our
method makes use of total round-trip time, thus the depth,
which is measured in active ToF methods, here, is termed
as incorrect depth due to the unknown source location. We
develop the necessary mathematical machinery to ensure that
the novel passive imaging can determine the source position.
Our proposed algorithm combines a bistatic formulation and
an iterative optimization strategy that seeks local planarity to
retrieve the unknown source location and correct the depth.

III. PROPOSED METHODOLOGY

The proposed bistatic geometry is demonstrated in Fig. 1a.
The LED source illuminates the scene with the modulated
light. Moreover, a lens forms an image on the camera’s
focal plane. For generating the ground truth data for our
numerical experiment, a simple model of the local target
geometry is first defined. We generated 3D plane points,
{Pi}Ni=1, by exploiting the camera lens normals for the N
pixels. The camera is located at a known position and, to
generate measurements synthetically, we defined a ground-
truth (GT) emitter position and calculated the incorrect depth
from the camera measurements. This depth and an initial guess
of the emitter location are inputs to our proposed algorithm
for determining the source position and correcting the depth.

A. General Least-Squares for Plane Fitting

In this work, we have limited our attention to a planar region
whose points follow equation (1). We adopt Hesse’s normal
form for modeling a planar patch of 3D points. A plane can
be defined as:

Z = αX + βY + γ (1)

where the normal vector is represented by #»x = (α, β, γ)
and Z = [z1, z2, . . . , zN ]T , X = [x1, x2, . . . , xN ]T , and
Y = [y1, y2, . . . , yN ]T are the 3D plane points. Here, N
represents the number of plane points given by the number
of pixels in the array. Given a collection of points, (1) is
translated as a linear system of equations Z = AAA #»x . The matrix
AAA is constructed as AAA = [X,Y,O], where O = [1, 1, . . . , 1]T ,
and AAA ∈ RN×3. As a result, the plane fitting problem
becomes an overdetermined system, as N ≫ 3, and the normal
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vector #»x can be estimated from Z by the Moore-Penrose
pseudoinverse AAA† = (AAATAAA)−1AAAT . Here

#»

x̂ is the least squares
(LS) solution of the system and we obtain a fitted plane model
by substituting these values in (1).

B. Ellipsoid Localization Geometry

To determine the bistatic range, the flight time of the optical
signal emitted from an unknown source is multiplied by the
speed of light. This gives the sum of the distances from the
emitter to the target, and then to the ToF sensor. Additionally,
it is important to subtract the baseline distance from the source
to the receiver. This induces a 3D ellipsoid (see Fig.1b), where
a target satisfying the resulting bistatic range may be located in
three-dimensional space. The emitter and ToF sensor locations
are its foci. We obtained the observation direction vectors of
each pixel, thanks to the lens calibration. For known foci, the
intersection of the ellipsoid and the direction vectors yield the
3D target points and, thus, the correct depth. The 3D target
location can be formulated as follows:

PT = PR + n⃗RdRT (2)

where PT and PR define the 3D target and receiver points and
n⃗R is the unit vector along the observation direction, and dRT
is the distance between the receiver and the target. The 3D
ellipsoid is defined by,

d = dET + dRT − dER (3)

where d defines the total distance, here named as incorrect
depth. dET = ∥PE − PT∥2 is the Euclidean distance between
the emitter and the target. dER = ∥PE −PR∥2 is the baseline
distance. Equation (3) is rearranged and we break down (2)
into 3D coordinate components and plug it into (3) for further
derivation. For brevity, the mathematical derivation has been
omitted. A previous version of the derivations, supposing
known source location and eliminating the effect of dER by
calibration, can be found in [1]. In this work, we consider
the effect of baseline distance, dER. The corrected depth,
d

′
= fdRT

(d, PE), is a function of the incorrect depth d and
PE is the 3D position of an emitter. G is the scalar product
of ⟨(PE − PR), n⃗R⟩, as follows,

fdRT
(d, PE) =

d2 + 2ddER

2d + 2dER − 2G
(4)

C. Proposed Algorithm

Let C(fdRT(d, PE), dFit) denotes a cost function that is
continuous on PE. Where dFit is the distance to each point
in the fitted plane. The cost function can then be minimized
by applying gradient descent with respect to the parameter,
PE. The number of iterations to reach a local minimum is
dependent on the step size η. Namely, we go down over the
surface formed by the cost function until we reach the bottom
of a valley. Typically, the mean squared error (MSE) is used
as the cost function. This calculates how far off a model is
from the ground truth. Note that we do not have access to the
GT values. Instead, we obtain them by applying plane fitting
to the corrected depth value at each iteration. The sum of the

squared differences between the corrected depth given by fdRT

and the fitted plane values dFit is the chosen cost function, as
given below,

C(fdRT
(d, PE), dFit) =

1

N

N∑
n=1

(fdRT
(d, PE)− dFit)

2 (5)

We have proposed an iterative extension of our bistatic algo-
rithm by introducing an additional step of gradient descent
to estimate the emitter position and correct the depth. To
compute the gradient of a cost function w.r.t the 3D coordinate
components of the emitter location, PE, and estimate how the
function changes with each component independently while
keeping the other constant. The idea of the BP-GD Algorithm
1 is an iterative approach for solving the ellipsoid localization
problem with an unknown source location in passive imaging.
The algorithm involves iterating the following two steps:

1) First, the corrected depth is computed using the bistatic
algorithm via (4). Next, this corrected depth is used to
fit a plane using (1), where the coefficients are unknown.
We estimate the coefficients using LS minimization. The
cost function is affected by the plane fitting process and
is highly dependent on the emitter location.

2) We compute the gradient of the cost function and use
it to update the emitter location, starting from a given
initial guess. Each location update guarantees either
a reduction in MSE or a minor change, ensuring a
monotonic reduction in MSE and convergence to a local
minimum.

For our validation study, we rely on realistic simulations of 3D
target geometry points in unknown source position settings.
To achieve this, we use the GT emitter location and introduce
noise with different variances to model the uncertainties in the
initial guess, which may come from a probabilistic filter. We
investigate various variances to derive statistical performance
indicators that account for varying degrees of uncertainty in the
initial guess, thereby enhancing the reliability of our analysis.

Algorithm 1 Blind 3D Source Localization using Bistatic
Passive Algorithm with Gradient Descent

1: Inputs: η, P (0)
E , PR, #»nR, d

2: Result: P (K)
E , C(P (K)

E ); d(K)
RT

3: for k ← 1 to K do
4: Compute corrected depth: d(k)RT using (4)
5: Construct matrix A
6: Calculate estimate:

#»

x̂
k
= A†k #»y k

7: Updated plane model: plane fitting using (1)
8: Compute the cost function:

C(P (k−1)
E )← 1

N

∑N
n=1(fdRT

(d, P
(k−1)
E )− d

(k)
Fit)

2

9: Estimate the gradient of the cost function: ∂C(PE)
∂PE

10: Update the emitter location: P (k)
E ← P

(k−1)
E −η ∂C(PE)

∂PE

11: end for

IV. RESULTS AND DISCUSSION

A number of numerical simulations are carried out to vali-
date our novel algorithm over synthetically generated passive
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ToF data. We consider two target cases, namely vertical and
horizontal planes. We define the emitter, receiver, and target
points to simulate the fully passive setup. In this case, the cam-
era lens normals are used to attain the target 3D plane points
and we leverage the bistatic geometry (3) to get the incorrect
depth, emulating real sensor measurements. The receiver is
located at the origin of the coordinate system PR =(0,0,0) cm
and the emitter is placed at PE =(2,30,20) cm as GT location
for both (vertical and horizontal) planes, respectively. Firstly,
the GT depth is generated using the l2 distance between the
target and the receiver. Fig. 2 shows the GT depth, incorrect
depth using (4), and the depth error w.r.t GT for the vertical
plane. The maximum depth error is of 14.3 cm. For both
vertical and horizontal plane cases we use the same approach
to obtain the initial guess. The initial guess is drawn from
the normal distribution N (PE, σ

2) with σ2 ∈ {5, 10, 20}. We
carried out 12 realizations to obtain statistical metrics. For the
worst-case scenario (σ2 = 20), we report representative cases
of best, medium, and worst performance based on the emitter
position error. Fig. 3 shows the incorrect depth error with
respect to the GT and the depth reconstruction error attained by
the proposed approach, which is in the sub-centimetric range
for the best case. The depth reconstruction absolute error is
of 1.3 cm for the best case, 1.55 cm for the medium, and 3 cm
for the worst. Fig. 4 shows the cost function value and how
the estimated emitter location errors decrease with the number
of iterations. In the best case, the largest depth reconstruction
error values are around 1.3 cm as witnessed by the first row
of plots of Fig. 3. The indirect depth deviates as the emitter
location changes.

Fig. 5 demonstrates the GT depth and incorrect depth for
the horizontal plane. The image size is limited by half of the
pixel array, 100 × 640 pixels due to the fact that only the
lower half of the pixel array observes the horizontal plane.
We restricted 100 pixels due to infinite distance. The hori-
zontal plane is located -9 cm below the camera. The incorrect
depth is obtained by applying (3) to the depth reconstruction
obtained from (4). We present the depth reconstruction for the
horizontal plane in Fig. 6. The depth reconstruction absolute
error is of 1.2 cm for the best case, 1.8 cm for the medium, and
2.3 cm for the worst case. Fig. 7 depicts the emitter estimation
error and the cost function versus the number of iterations
for the horizontal plane. It can be seen that the source error
is decreased 4.2 cm and that the cost function follows the
same monotonically-decreasing pattern as the emitter position
error. Our indoor infrastructure consists largely of a number of
planes, our method is able to reconstruct the target depth via
the proposed passive algorithm. To evaluate its robustness, we
added Gaussian noise to the measurements and also controlled
the baseline distance, dER, for 0 dB SNR value. The depth
error is evaluated in terms of root-mean-square error (RMSE)
and we attained -13 dB and -11.2 dB for the best case of the
vertical plane and horizontal plane, respectively, as shown
in Fig. 8. The vertical plane case exhibits a lower depth
reconstruction error compared to the horizontal plane, likely
due to the directional effect of the emitter on the latter. As

the number of iterations increases, the cost function shows a
linear decay, until an accurate reconstruction is attained.

Fig. 2. 3D imaging from simulated passive ToF measurements of the vertical
plane. Ground truth depth and absolute depth error with respect to GT.
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Fig. 3. Qualitative results of our approach on the vertical plane. The incorrect
depth is based on the estimated emitter position (column 1). The corresponding
absolute depth error is given in column 2. The depth reconstruction (column
3) and the corresponding absolute depth error plot (column 4) are shown with
σ2 = 20 at best, medium, and worst cases.
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Fig. 4. Vertical plane emitter location error and cost function values versus
iteration number at σ2 = 20 for best, medium, and worst cases.

V. CONCLUSIONS AND FUTURE WORK

In this work, we address the 3D ellipsoid-restricted localiza-
tion problem that arises in passive ToF imaging when relying
on a bistatic setup and when the emitter location is unknown.
The proposed method exploits local planarity, present in most
real scenarios. Our method is designed to estimate the 3D
geometry of the scene and the emitter location simultaneously.
The obtained results complement existing efforts to develop
passive imaging technologies. Specifically, we used iterative
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Fig. 5. Ground truth depth and absolute depth error for the horizontal plane
with respect to GT.
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Fig. 6. Qualitative results of our approach on the horizontal plane. The
incorrect depth is based on the estimated emitter position (column 1). The
corresponding depth error is given in column 2. The depth reconstruction
(column 3) and the corresponding error map (column 4) are shown with
σ2 = 20 at best, medium, and worst cases.
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Fig. 7. Horizontal plane emitter location error and cost function values versus
iteration number at σ2 = 20 for best, medium, and worst cases.

Fig. 8. Depth reconstruction error for the vertical and horizontal planes with
different measurement SNR for the best case.

optimization to predict the location of the source. To achieve
this, we combined a step of correction of the depth estimates
given the current estimate of the bistatic geometry with
another one updating the estimate of the source via gradient
descent. This approach enabled us to accurately recover the
source location and to correct the depth reconstruction of
the scene. Experiments with synthetic data conducted in two
plane configurations showed that depth reconstruction errors
below 2 cm were achieved in 96% of the cases and the source
location could be estimated with 3.5 cm position error. Our
algorithm is used for synthetic plane scenes. Future work
includes validating the algorithm using experimental data from
a bistatic passive ToF camera and the development of a method
for locating planar regions in the scene.
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