Deep learning-based reconstruction for near-field
MIMO radar imaging

Irfan Manisali and Figen S. Oktem
Department of Electrical Engineering, METU, Ankara, 06800 Turkey
Email: figeno@metu.edu.tr

Abstract—Near-field multiple-input multiple-output (MIMO)
radar imaging systems are of interest in diverse fields such as
medicine, through-wall imaging, and surveillance. The imaging
performance of these systems highly depends on the underlying
image reconstruction method. While sparsity-based methods
offer better image quality than the traditional direct inversion
methods, their high computational cost is undesirable in real-time
applications. In this paper, we develop a novel deep learning-
based reconstruction method for near-field MIMO radar imaging.
The main goal is to achieve high image quality with low compu-
tational cost. The developed approach has a two-staged structure.
The physics-based first stage performs adjoint operation to back
project the measurements to the reconstruction space, and DNN-
based second stage converts these backprojected measurements to
a scene reflectivity image. As DNN, a 3D U-Net is used to jointly
exploit range and cross-range correlations. We illustrate the
performance of the reconstruction method using a synthetically
generated dataset. The results demonstrate the effectiveness of
the developed method compared to commonly used analytical
approaches in terms of image quality and computation time.

Index Terms—computational imaging, deep learning, radar
imaging, microwave imaging, MIMO, inverse problems

I. INTRODUCTION

Near-field radar imaging systems are of interest in diverse
fields such as medicine, through-wall imaging, airport security,
concealed weapon detection, and surveillance [1]-[4]. Earlier
near-field radar imaging systems have operated in monostatic
mode using large number of transceiver antennas.Recently,
sparse multiple-input multiple-output (MIMO) arrays with
spatially distributed transmit and receive antennas have gained
more attention since they can offer high resolution with
reduced cost, hardware complexity, and acquisition time [1]—
(31, [5].

Near-field MIMO radar imaging systems aim to reconstruct
the three-dimensional (3D) reflectivity distribution of the scene
from the limited radar data. As a result, the imaging perfor-
mance largely depends on the underlying image reconstruction
method. Traditional direct inversion methods such as backpro-
jection (and its variants) have low computational complexity
but they suffer from reconstruction artifacts when observa-
tions are limited. While sparsity-based iterative reconstruction
methods offer better reconstruction quality than the traditional
direct inversion methods at compressive settings [4], [6]-[8],
they suffer from high computational cost which is undesirable
in real-time applications.
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Recently, reconstruction techniques that exploit deep learn-
ing have emerged as an alternative [9], [10]. These methods are
shown to achieve high reconstruction quality with low compu-
tational cost for various imaging problems. In the context of
near-field radar imaging, deep learning-based reconstruction
methods have not been studied much in the literature. Most of
the proposed methods are for far-field settings in SAR/ISAR or
MIMO radar imaging [11]-[18]. In near-field radar imaging,
there are some works for deep learning-based approaches,
but most of them apply to the monostatic setting [19], [20].
For near-field and MIMO radar imaging, there are fewer
works [21] and no comprehensive study. The work in [21]
develops a learning-based direct inversion method that sepa-
rately processes the magnitude and phase of the backprojection
images with 2D-convolutional layer blocks. Because of 2D
processing, the method can not exploit range correlations.
Moreover, both training and testing are performed with simple
point scatterers only. Hence this method is not applicable for
imaging extended targets as encountered in practice.

In this work, we develop a novel deep learning-based two-
stage (Deep2S) method to reconstruct the 3D scene reflectivity
from the near-field observations of a MIMO imaging radar.
The main goal is to achieve high image quality with low
computational cost so that the developed Deep2S method can
be used in real-time applications. The developed approach has
a two-staged structure that consists of an adjoint operation
followed by a 3D U-Net architecture. The adjoint stage ex-
ploits the observation model of the system and back project
the measurements to the reconstruction space. The second
stage employs a 3D deep neural network which is trained to
convert the backprojected measurements to a magnitude-only
reflectivity image. Numerical simulations are performed for
a microwave imaging setting. For both training and testing,
a large synthetic dataset is randomly generated to obtain 3D
scenes that involves extended targets. Using this dataset, we
illustrate the performance of the developed approach under
different imaging scenarios and compare the performance with
back-projection and sparsity-based reconstruction methods.

II. OBSERVATION MODEL

A sample observation geometry for near-field MIMO radar
imaging is illustrated in Fig. 1. The transmit and receive anten-
nas are spatially distributed on a planar MIMO array located
at z = 0. Each transmit antenna illuminates a scene that lies
in the near-field of the array. Using Born approximation for
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the scattered field, the signal captured by the receive antenna
due to a single scatterer at (z,y, z) with reflectivity s(z,y, 2)
can be expressed in the temporal frequency domain [2] as

p(k)
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where d;

\/(mt—x)2+(yt—y)2+z2 and d, =

\/(xr — z)Q + (yr — y)2 + 22. Here 7 (2, yt, Tr, yr, k) de-
notes the temporal frequency domain measurement obtained
using the transmitter at (x4, v 0) and the receiver at
(24, 9r,0), where d; and d,. respectively denote the distances
from the corresponding transmit and receive antenna elements
to the scatterer, p(k) is the Fourier transform of the transmitted
signal with k = 27 f/c being the frequency-wavenumber, f
the temporal frequency, and c the speed of the light.
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Fig. 1: Near-field MIMO Radar Imaging System.

The total received signal 7 (¢, yt, Ty, yr, k) due to an ex-
tended target is then given by

k -
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(2)
where s(x,y,z) represents the complex-valued three-

dimensional reflectivity distribution of the scene.

This continuous model is converted to a discrete model
by replacing the 3D reflectivity function with its discrete
representation in terms of voxels. The voxel size is chosen
based on the desired down-range and cross-range resolutions.
We can then express the relation between the complex-valued
image vector s and the measurement vector y which contains
the noisy measurements obtained using different transmitter-
receiver pairs and frequency steps, as follows:

3)

where A is the observation matrix and w is the noise vector.
In general, the observation matrix A is rectangular and its
(m,n)th element, representing the contribution of the nth
voxel to the mth measurement, can be expressed as:

y=As+w
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Here the measurement index m indicates the locations of the
transmitting and receiving antennas, as well as the frequency,

km, used in this measurement. Moreover, d,Ejj} and dszl)
respectively represent the distances from the center of the nth

voxel to the transmitter and receiver used.

III. DNN-BASED TWO-STAGE RECONSTRUCTION

In the inverse problem, the goal is to reconstruct the
unknown reflectivity field of the scene, s, from the limited
radar measurements, y. To achieve high image quality with
low computational cost, we develop a physics-based learned
direct reconstruction method called Deep2S. The method has
a two-stage structure as shown in Fig. 2 where the first stage
is an adjoint operation that exploits the physics-based model,
and the second stage is a 3D U-Net denoiser for refinement.

First Stage: Analytical Computation
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Fig. 2: DNN-based Two-Stage (Deep2S) Approach.

Since it is generally a difficult task for a network to learn the
direct mapping from the measurement space to the 3D object
space, we first apply the adjoint operator to the measurements
to provide the network in the second stage a warm start.
The adjoint operation encapsulates the physical model of the
imaging system and has the benefit of fast computation due
to its non-iterative nature using the hermitian of the system
matrix (i.e. A7y). This stage simplifies the learning process
of the 3D U-Net architecture in the second stage since it back
projects the radar measurements to the 3D object space.

At the second stage, a deep neural network is employed to
improve this 3D intermediate result. The network is trained to
convert the backprojected measurements to a magnitude-only
reflectivity image. Although scene reflectivities are complex-
valued, in most applications they have random phase nature,
and as a result it is generally sufficient to reconstruct the mag-
nitude of the scene reflectivity. Because of this, the magnitude
of the backprojected measurements from the first stage is input
to the DNN in the second stage. As DNN, a four-level 3D U-
Net architecture is developed as in Fig. 3 based on the 2D
U-net in [22]. This 3D U-Net architecture can jointly capture
the correlations along both range and cross-range directions
of a 3D extended target unlike the 2D DNN used in [21].
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This architecture has an encoding and decoding path. The
encoding path contains the repeated application of 3D convolu-
tions of size 3 x 3 x 3, batch normalization (BN), rectified linear
unit (RELU), followed by a 2 x 2 x 2 max pooling with strides
of two. The decoding path consists of 3 x 3 x 3 upconvolution
with strides of two in each dimension, which is followed by
a RELU. In the decoding path, there are also concatenations
with the cropped feature maps from the encoding path. The
input and output of the network is of size 25 x 25 x 49 voxels.

The 3D U-Net architecture has three properties suited
for our imaging problem. Firstly, due to the encoding and
decoding paths, the effective receptive field of the network
increases. Here, our main purpose is the refinement of the
input image from the first stage. Having a large receptive field
over the input image can improve the quality of the output
image. Secondly, the 3D U-Net employs multichannel filters.
By this way it can better extract the feature maps of its input.
This increases the dimension of the latent representation of
our input images, which increases the expressive power of the
network. Thirdly, the 3D U-Net architecture can capture the
correlation along both range and cross-range directions of the
three-dimensional target, unlike the existing approaches in the
literature.

Hence a feed-forward approach is obtained while incorpo-
rating the physics-based knowledge of the MIMO imaging
system through the usage of the hermitian of the system ma-
trix. The Deep2S approach has low computational complexity
as desired. The computational cost of the overall approach is
dominated by the 3D U-Net.

For training, the simulated radar measurements are first
passed through the adjoint operation stage. The magnitude
of the 3D reflectivity obtained with this adjoint operation is
then input to the second stage. The DNN in the second stage
is trained using these reflectivity magnitudes together with
the corresponding ground-truth reflectivity magnitude of the
scene, which form our training input and output respectively.
For training, a synthetically generated dataset is used as ex-
plained in the next section. After training, we process our radar
measurements in the test dataset with the proposed method to
reconstruct the reflectivity magnitude of the unknown scene.

IV. NUMERICAL RESULTS
A. Simulation Setting

The sketch of the observation setting is shown in Fig. 1. As
a sparse MIMO array, we consider a Mills Cross array [2],
[6]. The width of the planar array is 0.3 m, which includes 12
uniformly spaced transmit antennas and 13 uniformly spaced
receive antennas along its diagonals in a cross configuration.
The target center is located approximately 0.5 m away from
the 2D MIMO array. The frequency ranges from 4 to 16 GHz
with uniformly sampled steps. In the numerical simulation,
the number of frequency steps is selected as 7, 15, and 31
respectively to investigate the performance of the developed
method at different compression levels.

Our goal is to infer the reflectivity image within a cube of
size 0.3m x 0.3m x 0.3m, where the voxel size is chosen as

1.25em x 1.25em x 0.625¢m in x, y, and z directions, which is
half of the expected theoretical resolution in each direction [2].
Then the reflectivity cube is of size 25 x 25 x 49.

B. Synthetic Dataset Generation

A large experimental dataset is not available in many radar
imaging applications. Because of this, the neural network
is trained using a synthetic dataset that contains various
randomly generated 3D targets as illustrated in Fig. 4. Firstly,
the center of the object is randomly chosen from a uniform
distribution between -0.05 and 0.05m for the x and y-axis and,
0.41 and 0.59m for the z-axis. Then, around the center of the
object 5 virtual centers are chosen according to a Gaussian
distribution with zero mean and standard deviation of 2. For
every virtual center, 3 points are generated according to a
Gaussian distribution with zero mean and standard deviation of
1.5. For one synthetic scene, we totally have 15 points chosen
randomly within the cube. To obtain volumetric objects, these
15 points are passed through a 3D Gaussian filter with a
standard deviation of 1.3. This is then passed through the
sigmoid function which performs the amplitude normalization
of the generated 3D targets to a maximum value of 1.

With this approach, we obtain different 3D objects that
spread within the cube from a randomly chosen center. The
training, validation, and test datasets contain 800, 100, and
100 images which were randomly generated in this way.

C. Training Procedure

The implementation is done using Jupyterlab 3.1.7. The
training took about 8 hours using NVDIA GeForce RTX 3060.
The learning rate is chosen as 1073, batch size equals as 16,
and loss function is chosen as [l loss.

D. Results

We present the performance of the developed method by
considering different compression levels in the observations.
For performance comparison, the results are also obtained
using the adjoint operation, backprojection (BP) and total-
variation based reconstruction [6].

In Table I, the average reconstruction performance of dif-
ferent methods is given for 100 test images in terms of 3D
PSNR and SSIM at 30 dB SNR. The number of frequency
steps is increased twice each time. Hence the compression
ratio is respectively %4, %8, and %16. In all cases, the Deep2S
approach outperforms the other approaches in terms of PSNR
and SSIM metrics. When the number of frequency steps is
decreased, the reconstruction performance of all approaches
decreases due to the increased ill-posedness of the problem.
In the worst case when the number of frequency steps is 7,
the Deep2S approach gives an average PSNR of 29.13 dB
and an SSIM of 0.89. As the number of frequency steps
increases, Deep2S approach passes 30 dB PSNR and 0.90
SSIM. Also, increasing the number of frequency steps from 15
to 31 does not make a significant change in the reconstruction
performance. As a result, 15 frequency steps seem to be
enough for this imaging scenario.
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Fig. 3: Architecture of the 3D U-Net.

Fig. 4: Samples of Synthetically Generated Dataset (The units
of x, y, and z-axis are meters).

Ground Truth

Back-Projection

PSNR 18.28 dB - SSIM 0.06 | PSNR 27.50 dB - SSIM 0.83

Adjoint

Deep2S

PSNR 20.44 dB - SSIM 0.10 | PSNR 31.63 dB - SSIM 0.95

Fig. 5: Reconstructions of the different algorithms for a sample
test image at 30 dB SNR (Number of Frequency Steps: 15).

Figure 5 illustrates the reconstruction performance of dif-
ferent methods for a sample image in the test dataset. As seen,
both the TV algorithm and the Deep2S approach provide good
reconstruction performance while the Deep2S approach gives

TABLE I: Average PSNR and SSIM Values for Different
Number of Frequency Steps at 30 dB SNR. Best results are
shown in bold.

Number of Frequency Steps | Method | PSNR (dB) | SSIM
Adjoint 23.0 0.35

31 TV 26.3 0.83

Deep2S 30.4 0.94

Adjoint | 218 0.19

15 TV 25.5 0.74

Deep2S 30.4 0.94

Adjoint 20.3 0.12

7 TV 22.7 0.44

Deep2S | 29.1 0.89

TABLE II: Average PSNR and SSIM Values of Adjoint
Operation and BP Algorithm at 30 dB SNR.

BP  Adjoint
PSNR 2034  21.77
SSIM  0.12 0.19

a better reconstruction both visually and qualitatively. Deep2S
gives nearly artifact-free result, although the adjoint operation
provides a poor input to the DNN with many artifacts.
Testing the developed DNN-based method in conditions
different from the training dataset is examined in the exper-
iment shown in Figure 6. For this purpose, we introduce a
3D target image that is not contained in the synthetically
generated dataset. The 3D target image is an ellipsoid that
is centered on the cube. This target image takes up more
volume than the training dataset images. Also the introduced
ellipsoid has a bulk large volume within the cube while
the training dataset contains targets that are shapeless and
randomly scattered in the volume. Figure 6 shows the results
visually at 30 dB SNR (Number of Frequency Steps: 15).
The best reconstruction is obtained again with the Deep2S
approach both visually and qualitatively. The adjoint operation
and TV reconstruction show significant volume artifacts in this
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TABLE III: Average Runtime.
TV~ Deep2S
165s  77ms

Adjoint
32ms

case. Moreover, the TV reconstruction fails to fill the volume
inside of the ellipsoid. This result suggests that the developed
approach can have robust performance for 3D targets different
from the training set.

Ground Truth TV
>

PSNR 16.67 dB - SSIM 0.25

Adjoint

el

PSNR 16.62 dB - SSIM 0.15

Deep2S

PSNR 22.08 dB - SSIM 0.80

Fig. 6: Reconstructions of the different algorithms for the
ellipsoid test image at 30 dB SNR (15 Frequency Steps).

In Table II, the average performance of the adjoint operation
and the classical BP algorithm is given for 15 frequency steps
at 30 dB SNR. The reconstruction performance of the adjoint
operation is comparable (even slightly better) to the classical
BP algorithm. For this reason, we use adjoint operation as the
first stage of the Deep2S. The performance comparison is also
carried out with the adjoint operation instead of the BP.

Table III shows the comparison of average runtime. Note
that the Deep2S approach requires less than a second to
reconstruct the reflectivity field of a 25 x 25 x 49 scene
on the CPU, while the TV reconstruction requires a runtime
on the order of minutes. Hence the Deep2S approach not
only surpasses the other approaches in terms of reconstruction
performance but also is computationally more efficient except
for the adjoint operation which gives poor performance.

V. CONCLUSION

In summary, we developed a novel deep learning-based
approach for near-field MIMO radar imaging based on learned
direct reconstruction. We demonstrate the performance of the
developed method using a synthetically generated dataset and
compare its performance with the commonly used analytical
approaches. It has been observed that the developed method
provides the best reconstruction quality while enabling fast re-
construction, which shows promise for real-time applications.
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