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Abstract—This paper introduces a method for background (or
baseline) correction in hyperspectral images. The method is based
on the optimization of a criterion incorporating a non-quadratic
robust loss (data fidelity term) and both spatial and spectral
regularization terms to enforce baseline smoothness. Unlike the
classical approach based on a pixel-by-pixel baseline correction,
the proposed algorithm exploits jointly the spatial and spectral
information. The effectiveness of the the proposed algorithm
is demonstrated using simulated and geological hyperspectral
images.

Index Terms—Hyperspectral image processing, background
estimation, spatial and spectral regularization

I. INTRODUCTION

Hyperspectral imaging has received considerable interest
in the last years as it is of major importance in many
fields of application such as medical imaging [1], remote
sensing [2], chemical characterization of materials [3], [4],
and food quality control [5], [6]. This method allows to obtain
more detailed information than those provided by conventional
imaging techniques based only on three color channels or,
at least, a few spectral bands. In contrast, each pixel of a
hyperspectral image contains several spectral bands that can
range from X-rays to infrared.

The spectral-spatial information provided by hyperspec-
tral imaging systems is often embedded in the so-called
background spectrum related to the acquisition system or
the imaged material. The latter often appears as a sample-
independent smooth curve in the spectrum corresponding to
a given pixel. Several methods have been proposed to fit and
substract this baseline from raw spectra. Some of them are
now discussed. Asymmetric Least Squares (ALS) [7] seeks to
iteratively estimate the baseline using weights that penalize
rapid changes. An improvement to this method, named Adap-
tive Iteratively Reweighted Penalized Least Squares (airPLS),
uses an exponential weighting of the negative residuals [8].
Another improvement (Improved Asymmetrically Reweighted
Penalized Least Squares, iarPLS) was recently proposed by
Ye et al. [9]. It uses an adjusted weighting formula to
improve the baseline estimation when fitting small peaks in
noisy data. Other approaches include Peaked Signal’s Asym-
metric Least Squares Algorithm (PSALSA) [10], Iterative
Reweighted Spline Quantile Regression [11], and Statistics-
sensitive Non-linear Iterative Peak-clipping (SNIP) [12], [13]

based on peak clipping. The method proposed in [14] ap-
proximates the baseline with a polynomial function whose
coefficients are estimated by minimizing a non-quadratic cost
function. Another way to fit a baseline is to use deep learning
techniques. For instance, Schmidt et al. [15] proposed a con-
volutional neural network approach to estimate the baseline.
A trained adversial neural network was also presented in [16].

All of these methods aim to fit a baseline to a single
spectrum associated with a pixel in a hyperspectral image.
When processing a hyperspectral image, it is obviously useful
to exploit neighboring pixels to improve baseline estimation.
It is worth to mention that the algorithm presented in [17]
is able to perform baseline correction from multiple spectra
collected several times for the same sample. The objective of
this paper is to propose an algorithm, tailored for hyperspectral
images, and in which baseline estimation also accounts for the
similarity of immediate neighboring pixels. We also propose
an implementation scheme to avoid direct inversion of the
underlying large matrices.

The remainder of this paper is organized as follows. In
Section II, we present a regularized non-quadratic strategy to
estimate the baseline of one-dimensional spectra. This strategy
is then extended in Section III to deal with hyperspectral im-
ages with spectral and spatial regularizations. We present the
proposed method and discuss its numerical implementation.
Experiments using simulated and real hyperspectral images
are detailed in Section IV. Finally, the conclusions are drawn
in Section V.

II. SINGLE SPECTRUM BACKGROUND ESTIMATION

Let y ∈ Rp be a p-points spectrum. Each point corresponds
to a spectral band noted yi, i = 1, 2, . . . , p. It is assumed
that y is the superposition of a smooth baseline x ∈ Rp,
the useful spectrum composed of peaks whose positions and
intensities depend on the considered sample, and noise. When
the intensity of all useful peaks is greater than the base-
line, it has already been reported that estimating the latter
using an asymmetric least squares-type method leads to better
results [14]. Baseline correction can be formulated as the
minimization of the following cost function:

J(x) =

p∑
i=1

φ(yi − xi) + α||Dpx||22, (1)
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where φ(x) is a non-quadratic and asymmetric function which
strongly penalizes negative and small values of x and whose
cost is lower for large positive values. This property allows
for robust estimation as the minimizer is less sensitive to
outliers and/or large peaks in data than the squared error loss.
In this paper, we use the asymmetric Huber function defined
as follows:

φ(x) =

{
x2, if x < s,

2sx− s2, otherwise.
(2)

where s ≥ 0 is a tuning parameter. Notation || · ||2 stands for
the Euclidean norm and Dp ∈ R(p−1)×p is a finite difference
matrix of order 1:

Dp(i, j) =


−1, if j = i,

+1, if j = i+ 1,

0, otherwise.
(3)

The parameter α > 0 allows one to control the smoothness
of the baseline along the spectral dimension. As the objective
function in (1) is not quadratic in x, its minimizer cannot be
expressed analytically. The method proposed in [18] consists
in using a half-quadratic minimization which is more efficient
than gradient methods. The half-quadratic minimization con-
sists of introducing auxiliary variables z = [z1, . . . , zp]

⊤ in a
new criterion K(x, z) that admits the same minimum as the
original criterion J(x):

K(x, z) =
1

c

p∑
i=1

1
2

[
(yi − xi − zi)

2 + u(zi)
]

+ α||Dpx||22, (4)

where u(z) = supx(cφ(x)−(x−z)2/2) and c = 1/2 [14]. The
criterion K(x, z) is half-quadratic because it is quadratic in x
and convex in z. The minimizer (x̂, ẑ) is calculated using an
alternating approach: for a given x, we seek for the minimizer
over z, and with this value the criterion is then minimized with
respect to x. Let (x(k−1), z(k−1)) be the solution at iteration
(k− 1), and (x(0), z(0)) as the initial point. At iteration k we
calculate:

z(k) =argmin
z

K(x(k−1), z)

=⇒ z
(k)
i = −(yi − x

(k−1)
i ) + cφ′(yi − x

(k−1)
i ), (5)

x(k) =argmin
x

K(x, z(k−1))

=⇒ x(k) = (Ip + αD⊤
p Dp)

−1(y + z(k−1)), (6)

with φ′(x) = 2min(x, s) and Ip ∈ Rp×p is the identy matrix.
We assume that the convergence is reached when ||x(k) −
x(k−1)||2/||x(k)||2 < ϵ, where ϵ = 10−6 in this paper.

III. HYPERSPECTRAL IMAGE BACKGROUND ESTIMATION

A. Algorithm

In this section, we present our proposed method to estimate
the baseline of an entire data cube. Instead of considering
spectra as independent from each other, we stack those spectra
in a tensor Y ∈ Rm×n×p along the third dimension while

the first two represent the spatial dimensions. We then add a
penalty to the cost function, accounting for the similarity of the
baseline over neighboring pixels, to estimate the baseline X ∈
Rm×n×p for the image Y . Let us denote A •d B the p-mode
product of a tensor A and a matrix B [19]. In this product,
summation is performed on the second index of the matrix B,
e.g., if A ∈ Rm×n×p and B ∈ Rq×m, then A•1B ∈ Rq×n×p

with [A•1B]ijk =
∑m

ℓ=1AℓjkBiℓ. The new cost function can
be expressed as

J(X ) = ϕ(Y − X ) + α||X •3 Dp||2F+
β
(
||X •1 Dm||2F + ||X •2 Dn||2F

)
, (7)

where ||·||F stands for the Frobenius norm and β is the param-
eter that controls the spatial smoothness of the baseline. With
a slight abuse of notation ϕ(Y −X ) =

∑
i,j,k φ(Yijk−Xijk).

The last term on the RHS of (7) penalizes large deviations of
the baselines among connected pixels. It is also worth to notice
that this penalty is separable along the two spatial dimensions.
This choice is motivated by the need to design a fast algorithm
able to process large data cubes.

Now, we need to vectorize equation (7) in order to build an
algorithm estimating the entries of tensor X . Let x = vec (X )
and y = vec (Y), where vec (·) denotes the vectorization
operator applied on a matrix or a tensor. We denote X(d)

the mode-d matricization (or flattening) of the tensor X ; this
operation arranges the mode-d fibers to be the columns of the
resulting matrix [19]. The following property will help us to
express the matricization operation by means of Kronecker
products [20]:

Y = X •1 A1 · · · •N AN ⇐⇒
Y(d) = AdX(d) (AN ⊗ · · ·Ad+1 ⊗Ad−1 ⊗ · · ·A1 )

⊤
, (8)

where ⊗ stands for the Kronecker product. The vector form
of the first term on the RHS of (7) can be easily expressed as

vec (Y − X ) = y − x. (9)

Moreover, using the flattening property in (8) and the fact that
vec (ABC) = (C⊤ ⊗A)vec (B), we obtain:

vec (X •3 Dp) = vec (X •1 Im •2 In •3 Dp)

= vec
(
ImX(1)(Dp ⊗ In)

⊤)
= (Dp ⊗ In ⊗ Im)vec

(
X(1)

)
= (Dp ⊗ In ⊗ Im)x, (10)

Proceeding in the same way for (X •1 Dm) and (X •2 Dn),
we get:

vec (X •1 Dm) = (Ip ⊗ In ⊗Dm)x, (11)
vec (X •2 Dn) = (Ip ⊗Dn ⊗ Im)x. (12)

Finally, equation (7) can be rewritten as follows:

J(x) = ϕ(y − x) + α||(Dp ⊗ Imn)x||22
+ β||(Inp ⊗Dm)x||22 + β||(Ip ⊗Dn ⊗ Im)x||22. (13)
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Algorithm 1: Hyperspectral image baseline correction
algorithm

Input : Y ∈ Cm×n×p, s, α, β, ϵ

1 Initialization: y← vec (Y), x(0) ← 0, z(0) ← 0,
k ← 0, A : sparse;

2 repeat
3 k ← k + 1;
4 z

(k)
i ← −(yi − x

(k−1)
i ) + cφ′(yi − x

(k−1)
i ), for

i = 1, . . . ,mnp;
5 x(k) ← pcg(A,y + z(k−1));
6 until ||x(k) − x(k−1)||2 < ϵ;
7 X ← unfold(x);

Output: X ∈ Rm×n×p

Therefore, the minimizer of J(x) can be computed similarly
to the one-dimensional case. The hyperspectral counterpart of
the iteration in (6) is:

x(k) = A−1(y + z(k−1)), (14)

except that here z(k) ∈ Rmnp, and

A = Imnp + α(D⊤
p Dp)⊗ Imn + βImp ⊗ (D⊤

mDm)

+ βIp ⊗ (D⊤
nDn)⊗ Im. (15)

B. Implementation

As most of iterative algorithms for baseline correction, the
proposed scheme involves the inversion matrix A in (15). This
is a very challenging issue, both from memory requirement and
calculation time points of view, because the dimension of the
matrix is mnp×mnp which can be very large for large data
cubes. Fortunately, as A is a sparse matrix containing only a
small amount of non-zero entries, efficient iterative techniques
have been developed to solve a system of linear equations
of the form Ax = b without explicitly inverting matrix A.
For instance, we can cite the conjugate gradient and Lanczos
algorithms [21], [22] as well as the Wiedemann algorithm [23].
In this paper, only the non-zero entries of A are stored in
memory1 and we use the preconditioned conjugate gradient
method (PCG), as sketched in Algorithm 1. The Matlab code
is available on request from the authors.

IV. EXPERIMENTAL RESULTS

In this section, we will discuss the results obtained by
applying the algorithm on both synthetic and real geological
hyperspectral images.

A. Simulated data

In this first experiment, our objective is to assess the quality
of the estimated background in a fully controlled setting; i.e.
when the true baseline is perfectly known. The hyperspectral
image is of size 10 × 10 × 1000. Each pixel is a spectrum
composed of a sum of narrow Gaussian peaks embedded in

1The number of non-zero entries in A is linear in mnp.

a wide Gaussian baseline and an additive zero-mean white
noise. The baseline is subject to random shifts from one pixel
to another; the amplitude of the shifts obeys a uniform law in
the interval [− 1

4 ,
1
4 ]. A spectrum extracted from the resulting

image is shown in Figure 1(a). During our experiments we
have tested different signal-to-noise ratios (SNRs) to compare
the influence that have the spatial regularization on the baseline
fitting. We use the root-mean-square error (RMSE) metric to
assess the fitting quality; it is defined by RMSE = ||X̂ −
X̄ ||F /

√
mnp, where X̂ and X̄ are the estimated and mean

baseline over all pixels, respectively. The parameter α is set
to 1500. As s depends on the noise level, its value is fixed
at each SNR so as to obtain the best fit. As can be seen in
Figure 1(b), the RMSE decreases as the SNR increases. The
RMSE obtained with a spatial regularization (β = 0.01) is
smaller than the one with β = 0 even at small SNR.

B. Application on real geological data

The geological data comes from a µ-XRF hyperspectral
image obtained on a thin section of a solid sample from
the Saint-Melany Sn-W deposit in French Massif Central.
This sample is composed of wolframite and cassiterite macro-
crystals surrounded by quartz. During our experiment we
imaged a subsection from this sample centered on a cassiterite
crystal with quartz surrounding it. Data acquisition was done
with a Bruker Tornado M4 equipped with a rhodium (Rh) tube
working under a voltage of 50 kV and an intensity of 300 mA.
Detection was done with two 30 mm2 XFlash SDD detectors.
The pixel size was set to 20 µm with a dwell time of 20 ms
in each pixel.

Due to the low SNR, we performed spatial binning to group
pixel patches of size 10×10 in one pixel of a new hyperspectral
image. Hence, the original image of size 550 × 550 × 4096
was reduced to 55 × 55 × 4096 containing a total of 3025
spectra. The proposed algorithm is running under Matlab on a
computer equipped with Intel Xeon 3.20 GHz with 32 GB of
RAM. Different value of β have been tested to see the effect
of the spatial regularization on the baseline fitting. The other
parameters were fixed: α = 1500 and s = 2.5. The results are
compared with those obtained using SNIP algorithm which
is applied sequentially on each spectrum in the image. The
half-window length in SNIP was set at 50.

As shown in Figure 2(a), when we do not apply spatial
regularization to the hyperspectral image, we observe that
the baseline follows too much the variations of the spectrum
even in areas without peaks and picks up parts of the signal
especially between 5 and 10 keV. When we set β = 0.007,
we note that the baseline is smoother and passes through the
lower parts of the peaks, especially at the fluorescence peaks,
although it remains high at the scattering peaks from 18 to
23 keV. However, with a strong spatial penalty, the baseline
does not average out the noise in areas where there are no
spectral peaks. Using SNIP algorithm, we can see that the
baseline is lower than the one obtained with the proposed
algorithm with β = 0.007, particularly in the range 9–15 keV
where we see that the former is clearly underestimated. When
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(a) Example of a pixel spectrum with its baseline for SNR = 5 dB
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Fig. 1. Results of baseline fit on the simulated hyperspectral image

we compare all baselines together in Figure 2(b), we observe
that, with spatial regularization, the curves become closer and
closer as β increases. A β = 0.5 ends with a baseline almost
constant on the entire image, which is not expected as density
influences the baseline shape and quartz has a much lower
density compared to cassiterite. Hence, a β = 0.007 was
chosen for the following steps.

Once the background of the image has been corrected, we
perform K-means clustering to check whether the fluorescence
information is preserved. In Figure 3, we show the clustering
on the original data without extracting the baseline and with
baseline extraction. We choose to cluster the data into three
groups: the central cluster represents the cassiterite crystal,
the second cluster is composed of quartz surrounding the
crystal, and we added a third cluster for the other minerals
present in small quantities in the sample and pixels in which
more than one crystal was present. We note that the clustering
applied to the raw image and the one applied to the corrected
one are almost identical with no lost information from data
peaks. Even if the calculated baseline sometimes enters peaks,
that subtraction remains negligible compared to the preserved
signal. Most subtraction of peaks from the baseline occurs on
scattering peaks (18 to 23 keV), which holds no elementary in-
formation. At the same time, in Figure 3(c), we can observe the
baseline of each cluster. Cluster “other” corresponds to pixels
included or at the edge of the cassiterite crystal (Figures 3(a)
and 3(b)). It is then expected that some cassiterite signal
will be held into these pixels, which is visible with baselines
“cassiterite” and “other” being similar (Figure 3(c)). On the
contrary, the “quartz” baseline is really different with a much
higher elevation between 5 and 23 keV, which is expected
from the lower quartz density. The ability of the algorithm to
maintain this feature when the spatial regularization is not too
high is essential in its applicability to geological samples.

V. CONCLUSION

We proposed a baseline correction algorithm for hyper-
spectral images capable to enforce smoothness along spatial

and spectral dimensions. The complexity of the algorithm is
linear in data length: provided that the data can be stored
in memory, it is able to process large hyperspectral images.
During our experiments, we tested several parameters and
configurations to assess the influence of the additional spatial
regularization on synthetic and real data. When compared to
a classical method that does not use spatial information, we
observed an improvement in the smoothness of the baseline.
However, the choice of spectral and spatial parameters remains
a significant challenge that must be carefully manipulated to
prevent large fluctuations in the baseline. Obtaining the density
information from the baseline of spectra opens avenues to
propagate the surface information from X-Ray fluorescence
to the third spatial dimension accessible from X-ray computed
tomography, which, in first approximation, depends on sample
density.
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