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Abstract—In this paper, a new motion deblurring method is 

investigated for reconstructing a latent image from a raw mosaic 

image that has been blurred by motion. Since conventional 

motion deblurring methods for color images often suffer from 

significant errors due to non-linear processing in color image 

processing pipeline, we devise a new deblurring technique by 

generating an invertible point spread function for deblurring of 

raw mosaic image by using coded exposure photography. The 

effectiveness of this method is demonstrated using a real dataset.  

Keywords— Raw mosaic image deblurring, motion deblurring, 
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I. INTRODUCTION 

Recovering a clear image from a motion-blurred one has 
been a longstanding challenge in the field of image processing 
and computer vision [1-4]. The blurring process is modeled as 
a convolution of the original sharp image, denoted by 𝑚, with 
a point spread function (PSF) ℎ that represents the blurring by 
the motion between camera and scene as follows: 

𝑖 = ℎ ∗ 𝑚 + 𝜂, (1) 

where 𝑖 is a blurred image, ∗ is the convolution operator, and 
𝜂  is image noise. The model in (1) may hold properly for 
monochrome images, but we note not quite so for those color 
images captured by a digital color camera employing color 
filter array (CFA) due to its non-linear processing in image 
signal processor (ISP) [5, 6]. The imaging sensor in many 
digital color cameras is covered by an array of color filters, 
typically arranged in a Bayer pattern [6], which lets the sensor 
capture a selected color component only (for example, one out 
of R, G, B) at each pixel location. A full-color image having 
all three-color components at each pixel location is generated 
by a demosaicking processing in ISP which typically involves 
a series of non-linear processing [6, 7]. The full-color color 
image after ISP, denoted by 𝑏, is given as: 

𝑏 = 𝑓(𝐵(𝑠 ∗ ℎ) + 𝜂), (2) 

where 𝑓 models whole processing happening in ISP [5-7], 𝐵 
represents image-sensing by color filter array (CFA) that 
generates a raw mosaic image [6], 𝑠  represents the latent 
image irradiance to the sensor, and 𝜂 is noise. Several kinds of 
non-linear processing [6-9] are inclusively represented by the 
function 𝑓 which can lead to performance degradation in color 
image deblurring [10]. One well-known such a non-linear 
processing is the demosaicking that interpolates the 
uncaptured color values at each pixel out by using those at 
neighboring pixels [7]. Lack of proper consideration in image 
deblurring [11] later regarding the undesirable artifacts 

generated by the demosaicking has put some limit on the 
performance of motion deblurring [12]. Another 
representative non-linear processing in ISP is a gamma 
correction (GC), which causes PSF estimation for motion 
deblurring not to be perfectly accurate [10]. 

One effective mitigation of those issues in ISP is to deblur 
a raw image before demosaicking. However, it should 
carefully consider that the latent raw mosaic image 𝐵(𝑠) 
cannot be simply convoluted as in (2) with the PSF ℎ due to 
the alternating under-sampling grid of the CFA pattern, e.g., 
Bayer pattern array [6]. For this reason, some recent works 
have estimated the latent images from the demosaicked color 
image under several assumptions to make the deblurring 
methods more realistic, e.g., by employing dark channel prior 
[13] or local minimal intensity prior [14]. To make the 
deblurring performance even better, [15] has employed a deep 
learning-based denoiser prior, a kernel error term, and a 
residual error term. In [16], post-processing has been applied 
to the dataset to reduce the domain gap between raw image 
and color image, but the averaged RGB dataset captured by a 
high-speed camera still cannot simulate the real-world blur 
well due to the ISP. Novel methods for improving PSF 
invertibility in photography have been proposed, including 
parabolic camera motion in [17] and phase encoding 
combined with machine learning-based deblurring algorithms 
in [18]. To deblur the raw mosaic image, subsampling 
algorithm have been used in previous works. For example, in 
[19], the latent image was iteratively reconstructed from color-
subsampled raw sensor data. In [20], a machine-learning-
based approach was also proposed to reconstruct the sharp 
color image from the color-subsampled raw mosaic image. 
However, since the relationship between the latent image of 
the color-subsampled image and the PSF is still not a simple 
convolution relation as in (2), the deblurring inevitably suffers, 
which is modeled as much noise.  

Our method in this paper is to modulate the relationship 
between PSF and raw mosaic image by employing a technique 
of coded exposure photography (CEP) [21-25]. The image is 
motion-blurred due to motion during camera shutter exposure 
which takes a rectangular pulse shape in the time domain. 
Since the Fourier transform of the rectangular pulse is the Sinc 
function with many zeros, this conventional exposure process 
behaves like a non-invertible filter thus losing spatial details 
in the deblurred image. To solve this, CEP modulates the light 
entering camera by adjusting the shutter exposure [21]. In this 
paper, we modulate the PSF considering the CFA pattern 
placed along the path of the point spread, i.e., motion 
trajectory, to help restoring the latent image from the raw 
mosaic image. By employing our proposed method of motion 
deblurring on the raw mosaic image, we demonstrate better  
ability to obtain a sharp image than traditional CEP methods 
by mitigating noise arising in the ISP. We demonstrate the 
effectiveness of our method by experimenting with real data. 
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II. ARTIFACTS OF IMAGE DEBLURRING DUE TO ISP 

The deblurring artifacts due to non-linear processing in 
ISP is illustrated in Fig. 2 using synthetic data. To make our 
analysis more focused and illustrative, we employed a 
monochrome camera (that is, without CFA). The camera 
response function (CRF) [8], which describes relation 
between scene radiance and the captured image intensity, 
approximates the response of the whole system as a single 
function with all procedures inside [8]. Actual CRF curve is 
different individually for each camera, but most camera 
manufacturers design the CRF to be a gamma curve [8] due to 
the gamma correction (GC). We denote the GC by 𝐶 where 
𝐶(𝑎) = 𝑎γ. As a consequence of applying GC, the maximum 
intensity and variance of noise increases as shown in Fig. 1.  
Thus, when deblurring a raw image, the noise in deblurred 
image (𝜂 ∗ ℎ−1) is increased as shown in Fig. 2(c). Note that 
deblurring of the final gamma corrected image shows further 
amplified noise depending on the blur kernel as in Fig. 2(e).  

One additional problem to note in association with 
applying GC is that it causes errors in motion deblurring and 
PSF estimation [10]. To focus on the analysis, we assume that 
the noise is negligible (𝜂 ≈ 0). We can design the noiseless 
grayscale blurred image by considering GC as 𝐶(𝑠 ∗ ℎ)  as 
shown in Fig. 2(i), where 𝑠 is the latent image irradiance. Let 
us denote the difference between before and after applying GC 
as Γ,  that is, Γ = 𝐶(𝑠 ∗ ℎ) − (𝑠 ∗ ℎ).  After the deblurring 
performed without proper consideration of the GC, the 
computed sharp image will be:  

�̂� = 𝐶(𝑠 ∗ ℎ) ∗ ℎ−1, (3) 

where �̂� is a computed sharp image, and ℎ−1  is the inverse 
filter of ℎ . Note that 𝐶(𝑠 ∗ ℎ) = (𝑠 ∗ ℎ) + Γ , (3) can be 
expressed as: 

�̂� = 𝑠 + (Γ ∗ ℎ−1), (4) 

and Γ ∗ ℎ−1 represents the additional deconvolution artifacts. 
As shown in Fig. 2(j), the deblurring result is confirmed not 
promising due to the additional deblurring noise. 

III. RAW IMAGE DEBLURRING USING CEP 

A. CFA impact on raw image deblurring 

Our goal is deblurring a raw image as defined in (5) to 
avoid the noise mentioned in the previous section.   

𝑟 = 𝐵(𝑠 ∗ ℎ) + 𝜂 (5) 

Since the CFA, denoted by 𝐵, filters the incident light for each 
photosensor independently according to the spectral 
sensitivity of its each color filter, the raw mosaic image cannot 
be processed using the PSF estimation and subsequent 
deconvolution modeled as (1) [4]. To obtain the latent raw 
mosaic image, which can be denoted as 𝐵(𝑠), we can design 
the following inverse filtering process: 

𝐵(�̂�) = 𝐵(𝐵−1(𝑟) ∗ ℎ−1), (6) 

where 𝐵(�̂�) is the computed latent raw mosaic image. Note 
that the intensity of the raw mosaic image is a result of 
integrated continuous signals filtered by CFA [9] as: 

𝐵(𝑠)[𝑛] = ∫ ∫ Φ(𝜆, 𝑥)𝑙(𝜆, 𝑥)𝑑𝜆
 

𝜆

𝑛+0.5

𝑛−0.5

𝑑𝑥, (7) 

where 𝑛 is the center position of the pixel, Φ represents the 
spectral response of CFA, 𝑙 denotes the relative intensity of 
the light, and 𝜆 is the wavelength. Thus, inversion of 𝐵 is an 
ill-posed problem. 

 

(a) 𝑠 ∗ ℎ + 𝜂 

 

(b) deblurring (a) 

 

(c) GC result of (b) 

 

(d) GC result of (a) 

 

(e) deblurring (d) 

 

(f) 𝑠 ∗ ℎ 

 

(g) deblurring (f) 

 

(h) GC result of (g) 

 

(i) GC result of (f) 

 

(j) deblurring (i) 

Figure 2. Comparison of motion deblurring results to analyze the 
effect of gamma correction (GC) on image deconvolution. The 
method in [4] is used for deblurring. Note that (a)-(e) are for 
illustrating noise amplification in noisy image deblurring, and (f)-
(j) are for demonstrating the deconvolution error [10] in the 
noiseless image deblurring procedure. 

  

(a) 𝑠 + 𝜂 (b) Deviation histogram of (a) 

  

(c) 𝐶(𝑠 + 𝜂) (d) Deviation histogram of (c) 

Figure 1. Graphs and histograms showing noise amplification by 

gamma correction 𝐶. In (a) and (c), a red line is the noiseless signal, 

and a blue dot represents the signal with Gaussian noise 𝒩(0,32). 
In (c), the gamma 𝛾 used for gamma correction is 2.2. (b) and (d) 
are histograms that visualize the deviations between the noiseless 
and the noisy signals of (a) and (c), respectively. The variances of 
(b) and (d) are 9.73 and 24.39, respectively. 
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B. Proposed deblurring scheme of RAW mosaic image  

To better understand our method, let’s assume the 1D 
uniform linear motion. The complex motions such as camera 
shake can be understood as a collection of 1D manifolds [21]. 
For 1D motion, the discrete equation of the blurred raw image 
in a vector form can be written as:  

r[𝑛] = ∑ 𝐵(s[𝑛 − 𝑘]ℎ[𝑘]) + η[𝑛]

𝐾−1

𝑘=0

, (8) 

where r, s , and η denote the vectors of blurred raw image, 
latent image irradiance, and noise along each motion line, 
respectively. Since the inverse of 𝐵  cannot be simply 
computed in (8), the latent raw image 𝐵(�̂�)  cannot be 
calculated directly. 

The purpose of our method is to obtain an invertible PSF 
for raw mosaic image using CEP, and the key is to generate a 
code fully considering the CFA pattern. Such a code, denoted 
by 𝑈, can optimize the invertibility of PSF for a given motion, 
thus eventually helping the deconvolution process [21]. The 
raw image captured by CEP, r𝐶𝐸𝑃 can be expressed as: 

r𝐶𝐸𝑃[𝑛] = ∑ 𝐵(s[𝑛 − 𝑘]ℎ[𝑘]𝑢[𝑘])

𝐾−1

𝑘=0

+ η[𝑛], (9) 

where 𝑢[𝑘]  is the 𝑘𝑡ℎ  element of the code 𝑈  with 𝑈 =
{𝑢[0], 𝑢[1], … , 𝑢[𝐾 − 1]}. Note that 𝐵  depends on the 
location 𝑛 due to the different spectral sensitivity of each color 
filter as in (7). For 1D motion, scene radiance is filtered by 
one row or column in the Bayer pattern array. Thus, we define 
𝐵1 and 𝐵2 as the two different color filters that make up each 

row of the Bayer pattern array. If the 𝑛𝑡ℎ pixel of the blurred 
image has been filtered by 𝐵1, the relationship between the 
latent raw image 𝐵(𝑠)  and the blurred image can be 
represented as follows: 

r𝐶𝐸𝑃[𝑛] = ∑ 𝐵1 (s[𝑛 − 2𝑘]ℎ[2𝑘]𝑢[2𝑘] +
(𝐾−1) 2⁄

𝑘=0

𝐵2
−1(𝐵2(s[𝑛 − (2𝑘 + 1)]ℎ[2𝑘 + 1]𝑢[2𝑘 + 1]))) + η[𝑛].  

(10) 

Although we still cannot obtain the inverse of 𝐵2, we can 
manipulate the code to remove the corresponding term. Here, 
we propose a code generation method of fixing 𝑢[2𝑘 + 1] to 
0 as: 

𝑈 = {𝑢[0], 0, 𝑢[2], 0, … ,0, 𝑢[𝐾 − 2] ,0}. (11) 

Since 𝑢[2𝑘 + 1] is 0, the signal filtered by the color filter with 
𝐵2 is eliminated. Also, since the same color filter is located on 

the (𝑛 − (2𝑘 + 1))
𝑡ℎ

 pixel, we can rewrite (10) as: 

r𝐶𝐸𝑃[𝑛] = ∑ 𝐵1(s[𝑛 − 𝑘])ℎ𝐶𝐸𝑃[𝑘]

𝐾−1 2⁄

𝑘=0

+ η[𝑛], (12) 

where ℎ𝐶𝐸𝑃  is a coded PSF and represents the element-wise 
multiplication of ℎ  and 𝑢.  (12) can be expressed as 
convolution relation between 𝐵1(𝑠) and ℎ𝐶𝐸𝑃: 

r𝐶𝐸𝑃 = 𝐵1(s) ∗ ℎ𝐶𝐸𝑃 + 𝜂. (13) 

Since the PSF of the r𝐶𝐸𝑃  is designed to spread only with the 
same color filter 𝐵1 as 𝑛, it can pack the same color pixels into 
one channel image and divide the raw image into four-channel 
(RGGB) images as shown in Fig. 3. Finally, we apply ISP 
functions to the reconstructed raw image to obtain a sharp 
color image as: 

𝑓(𝐵1(s)̂) = 𝑓(r𝐶𝐸𝑃 ∗ (ℎ𝐶𝐸𝑃)−1). (13) 

 

(a) Ground truth 𝑠 

 

(b) Conventional CEP  

 

(c) Proposed method  

Figure 4. Synthetic experiment result. (a) is an image irradiance 𝑠. 
We generate the blurred image with 1D motion and ISP functions 
[6]. (b) shows the result reconstructed by a conventional method 
[22], and (c) shows the deblurring result by the proposed method. 
Note that the optimization method for the code used in (b) and (c) 
are the same method of [22]. The graph below each image in (a) to 
(c) represent the signals of selected rows indicated by the green line. 

 
 

Figure 3. Comparison between conventional deblurring method and the proposed deblurring approach.  
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The code generated using the proposed method, which 
considers motion and CFA, is optimized using conventional 
optimization methods [21-23]. 

IV. EXPERIMENTAL RESULT  

We experimentally demonstrate the performance by using 
a synthetic and real data. For fair comparison, we use the code 
in our experiment that has the same performance as the code 
optimized by traditional method [22]. The code used in [22] is 
‘11000000000001100000100101000001,’ and the proposed 
code is ‘10100000101010100000000000100010.’ The 
experiment using synthetic data uses the codes above is shown 
in Fig. 4, where Fig. 4(a) is the latent image irradiance, Fig. 
4(b) shows the deblurring result from 𝑓(𝐵(𝑠 ∗ ℎ) + 𝜂), and 
Fig. 4(c) shows the deblurring result from 𝐵(𝑠 ∗ ℎ𝐶𝐸𝑃) + 𝜂 
and applying ISP after deblurring. Since CFA is a well-known 
spatially variant system [6], to simplify the experiment, it was 
conducted assuming a scene with two types of reflectance, as 
shown in Fig. 4(a). The noise is a random Gaussian noise with 
a mean of 0 and a standard deviation of 1. The PSNR (peak-
to-noise-ratio) and SSIM (structure similarity) are used for 
objective evaluation, and [PSNR, SSIM] of Fig. 4(b) and (c) 
are [25.14(dB), 0.1863] and [36.40(dB), 0.6706], respectively. 
Although the invertibility of the coded PSFs used for 
deconvolution is the same, we confirmed that our proposed 
method increased PSNR by 11dB compared to the 
conventional method [22].  

We captured a real scene as shown in Fig. 5 to demonstrate 
the effectiveness of our proposed method. The hardware setup 
for real experiment is shown in Fig. 5(a). To exclude the 
artifacts caused by PSF estimation in evaluating the proposed 
method, we control the motion so that the PSF is known in 
advance. For experiment, an object is mounted on a conveyor 
belt shown in Fig. 5(a) and we control its motion to move 
uniformly in 1D direction. Images of real moving objects are 
captured by the Basler acA2040 Bayer pattern CFA-based 
color camera [27]. We turned off all ISP options when 
capturing the raw mosaic image. To modulate the image using 
CEP, we carry out the experiment in a darkroom using a 
strobing LED synchronized with the camera. The codes used 
in the synthetic experiments are used for real experiments. We 
employ the CEP [22], dark channel prior [14], and local 
minimal intensity prior [13] for comparison. Note that  the 
conventional deblurring methods are applied to the color 
image in Fig. 5(d). This is almost identical to the outcome 
obtained by converting the raw image in Fig. 5(c) into a color 
image using ISP and then applying deblurring to it, because 
the performance of the codes used in Fig. 5(c) and Fig. 5(d) 
are the same. 

The acquired raw image is shown in Fig. 5(c), and the 
color image produced from the raw image using ISP [6] with 
demosaicking [26] is shown in Fig. 5(d). Our proposed 
method is applied to Fig. 5(c), and the result is shown in Fig. 
5(h). Prior arts for comparison are color image deblurring 

 

 

 
 

 
 

 

 

 
 

 

 

 
 

 

 

(a) Experimental setup (b) Ground truth 
(c) Raw image by the proposed 

method 

(d) Color image captured by the 

traditional CEP [22] 

 
 

 

 

 
 

 

 

 
 

 

 

 
 

 

 

(e) Deblurred result of color 

image (d) by [22] 

(f) Deblurred result of color 

image (d) by [14] 

(g) Deblurred result of color 

image (d) by [15] 

(h) Deblurred result of raw image 

(c) by the proposed method 

Figure 5. Experiment results. (a) Experimental setup, (b) captured stationary image as a ground truth, (c) raw image with motion blur, (d) 

color image reconstructed from (c) using white balancing, gamma correction [6] and demosaicking [26]. (e-g) are deblurring results of color 

image (d) by using [22], [14], [15], respectively. (h) is the deblurring result of raw image (c) by using the proposed method.  
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methods, so these are applied to Fig. 5(d), and the results are 
shown in Fig. 5(e-g). In those results reconstructed by 
traditional methods [14, 15, 22], the deconvolution noises, e.g., 
ringing artifact and zippering artifact, are found due to non-
linear functions in ISP. Our proposed method, a novel attempt 
for deconvolution on raw mosaic images, is seen to reduce the 
deconvolution noises significantly compared to the prior arts 
as shown in Fig. 5(h).  

In both experiments with synthetic and real data, we 
confirm improved performance of the proposed method 
compared to the prior arts. This is because our proposed 
method successfully acquires an invertible PSF for raw 
mosaic image, so that it is not affected by ISP noise while 
reconstructing latent raw mosaic image.  

V. CONCLUSION 

In this paper, we proposed a novel scheme that 
reconstructs a latent image after deblurring raw mosaic image. 
Inspired by CEP [21], our proposed method modulates the raw 
mosaic image to prevent deblurring artifacts caused by ISP. 
By deblurring raw image, we can significantly remove the 
deconvolution artifacts caused by ISP. We confirmed the 
effectiveness of our proposed method through an experiment 
using a real dataset. Since our proposed method is a PSF 
modulating method in consideration of the CFA, it can be 
extended to various CFA formats and can be applied to 
cutting-edge CEP methods for optimizing the code [28, 29].  

One limitation of our work is that we only solve for a given 
motion like other CEP methods [21-23]. Although many real 
motions, e.g., moving cars on the highway or flow cytometry, 
result in predictable motion as mentioned in [32], the proposed 
technique may be difficult to apply to problems under general 
environments due to its constraints. In the future, as motion 
observation technology advances, it may be possible to extend 
the application of the proposed technique to more general 
environments. Unique code generation for more general PSF 
will be also a promising direction of research in the future.  
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