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Abstract—Near-field radar imaging systems are used in a
wide range of applications, such as medical diagnosis, through-
wall imaging, concealed weapon detection, and nondestructive
evaluation. In this paper, we consider the inverse problem of
reconstructing the three-dimensional (3D) complex-valued reflec-
tivity distribution of the near-field scene from the sparse multiple-
input multiple-output (MIMO) array measurements. Using the
alternating direction method of multipliers (ADMM) framework,
we formulate this problem by exploiting regularization on the
magnitude of the complex-valued reflectivity distribution. We
then provide a general expression for the proximal mapping
associated with such regularization functionals operating on the
magnitude of the complex-valued unknown. By utilizing this
expression, we develop a computationally efficient plug-and-play
reconstruction method that involves simple update steps both
with analytical and deep priors. We illustrate the reconstruction
performance of our approach with a 3D deep prior on a synthetic
dataset. We also compare the result with the classical back-
projection method and magnitude-total variation. Our results
demonstrate that significant performance improvement can be
achieved with learned 3D priors.

Index Terms—Inverse problems, MIMO radar imaging,
complex-valued optimization, plug-and-play, deep prior, com-
pressed sensing.

I. INTRODUCTION

Near-field radar imaging systems are used in a wide range
of applications such as medical diagnosis, through-wall imag-
ing, concealed weapon detection, and nondestructive evalu-
ation [1]–[4]. Compared to the classical monostatic planar
arrays (with colocated transmitter and receiver antennas),
multiple-input multiple-output (MIMO) arrays offer reduced
hardware complexity and cost for high-resolution imaging
applications. As a result, there has been a growing interest in
using MIMO arrays for near-field radar imaging [2], [4]–[6].

Reconstructing the three-dimensional (3D) complex-valued
scene reflectivity from the sparse MIMO measurements is a
highly ill-posed problem. Therefore the reconstruction quality
greatly depends on the utilization of priors. For instance, the
traditional direct inversion schemes, such as back-projection
and range migration [3], [7], do not utilize prior information.
Consequently, their performance substantially degrades with
limited data. On the other hand, as motivated by the com-
pressed sensing theory, the regularized reconstruction methods
with sparsity priors such as Total-Variation (TV) and ℓ1 reg-
ularization offer promising imaging performance at compres-
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sive settings [8], [9]. However, sparsity-based reconstruction
methods generally have iterative nature obtained using variable
splitting methods such as the Alternating Direction Method
of Multipliers (ADMM) [10]. As a result, these methods
often have longer computation time than the direct inversion
approaches, which is undesirable in real-time applications.

The regularized reconstruction methods in the near-field
radar imaging literature enforce smoothness or sparsity di-
rectly on the complex-valued reflectivity distribution [8], [9],
[11]. These methods are therefore built on the assumption that
the scene reflectivity has locally correlated phase and magni-
tude. However, for many applications, the phase of the reflec-
tivity at a particular point can be more accurately modeled as
random and uncorrelated with the phase at other points [12],
[13]. This is because phase shift can occur when imaging
rough surfaces and also at the air/target interface due to the
electrical properties of materials [12]. Accordingly, enforcing
regularization only on the magnitude of the complex-valued
scene reflectivity can improve imaging performance [13]–[15].

With the recent developments in deep learning, learned
reconstruction methods emerged as powerful alternatives to
the regularized reconstruction methods with hand-crafted an-
alytical priors [16], [17]. These methods can utilize deep
neural networks to learn data-driven priors. The state-of-the-
art learned reconstruction methods incorporate the forward
model of the imaging system into the reconstruction process
to exploit physics-based information. Learned Plug-and-Play
(PnP) regularization and unrolling-based approaches are ex-
amples of physics-based learned reconstruction methods [16],
[18]. These approaches replace the proximal mappings on the
variable splitting steps with deep neural architectures [17],
[18]. Despite the recent success of these methods, most of
the approaches are developed for 2D and real-valued image
reconstruction problems [16]–[18]. Furthermore, there is no
study on such methods for near-field MIMO imaging where we
encounter a 3D complex-valued image reconstruction problem.

In this paper, we develop a novel and efficient PnP method
for reconstructing the 3D complex-valued reflectivity distribu-
tion of the near-field scene from sparse MIMO measurements.
Due to the random phase nature of the scene reflectivities
in various applications, we formulate the image formation
problem by exploiting regularization on the magnitude of
the reflectivity function. To use in variable splitting frame-
works such as ADMM, we provide a general expression
for the proximal mapping associated with such regulariza-
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tion functionals operating on the magnitude. By utilizing
this expression, we develop a computationally efficient plug-
and-play reconstruction method that results in simple update
steps for each variable. Since our ADMM-based method also
works with learned priors, we utilize a 3D deep denoiser
that can jointly exploit range and cross-range correlations.
The developed PnP approach provides a unified framework
to efficiently handle arbitrary regularization on the magnitude
of a complex-valued unknown, which appears to be missing
in the previous related radar imaging works [14], [15]. We
demonstrate the effectiveness of our approach in a compressive
near-field imaging scenario using a synthetic dataset consist-
ing of extended targets and compare the performance with
analytical approaches.

II. OBSERVATION MODEL

Under Born approximation, we can express the discrete
forward model that relates the near-field MIMO radar measure-
ments to the discretized reflectivity distribution of the scene
as follows [3], [11]:

y(xT , yT ,xR, yR, k) = p(k)
∑
x,y,z

e−jk(RT+RR)

4πRTRR
s(x, y, z) (1)

Here y(xT , yT , xR, yR, k) denotes the measurement obtained
using the transmitter at (xT , yT , 0) and the receiver at
(xR, yR, 0). The measurements are expressed in the temporal
Fourier domain with f denoting the temporal frequency and
k = 2πf

c denoting the frequency-wavenumber. p(k) repre-
sents the Fourier transform of the transmitted pulse. The
3D complex-valued reflectivity distribution of the scene is
denoted by s(x, y, z) and, RT and RR denote the distances
of the corresponding transmitter and receiver antennas to the
voxel at (x, y, z), i.e. RT =

√
(xT − x)2 + (yT − y)2 + z2,

RR =
√
(xR − x)2 + (yR − y)2 + z2.

The discrete model in (1) can be expressed in matrix-vector
product form as follows:

y = As+ n (2)

where A ∈ CM×N is the observation matrix for the ordered
image vector s ∈ CN and the corresponding measurement
vector y ∈ CM . The vector n ∈ CM represents uncorrelated
Gaussian noise with standard deviation σn.

The matrix A is a rectangular matrix with N ≫ M where
M equals the product of the number of transmitter antennas,
the number of receiver antennas, and the number of frequency
steps, while N is the number of voxels in the discretized
reflectivity image. The (m,n)th element of the observation
matrix represents the contribution of the nth voxel to the mth
measurement and can be expressed as follows:

Am,n = p(km)
e−jkm(RTmn+RRmn)

4πRTmnRRmn
. (3)

III. PLUG-AND-PLAY RECONSTRUCTION METHOD

A. Formulation of the Inverse Problem

In the inverse problem, the goal is to estimate the three-
dimensional complex-valued reflectivity field, s, from the radar

measurements, y. Due to the random phase nature of the
scene reflectivities, we formulate the inverse problem using
a regularization function, R(| · |), that only operates on the
reflectivity magnitudes:

min
s

R(|s|) subject to ∥y −As∥2 ≤ ϵ (4)

Here, ϵ is a parameter that should be chosen based on the
variance of the measurement noise (i.e.

√
M · σ2

n).

B. Variable Splitting and ADMM

To solve this regularized inverse problem, we first convert
the constrained problem to an unconstrained one using a
penalty function and then apply variable splitting as follows:

min
s,v1,v2

ι∥y−v1∥2≤ϵ(v1) +R(|v2|) (5)

subject to As− v1 = 0 , s− v2 = 0

Here the indicator function ι∥y−v1∥2≤ϵ(v1) takes value 0 if
the constraint in (4) is satisfied and +∞ otherwise, whereas
v1, v2 are the auxiliary variables.

We solve the optimization problem in (5) using C-SALSA
approach [19] by obtaining the associated augmented La-
grangian form and then alternatively minimizing over s, v1,
and v2. In the corresponding ADMM framework, the mini-
mization over s corresponds to solving a least-squares problem
with the following normal equation:

(AHA+ κI)sl+1 = AH(vl
1 + dl

1) + κ(vl
2 + dl

2) (6)

where the superscript l is the iteration number, κ ∈ R+ is a
hyper-parameter that needs to be adjusted, and d1, d2 denote
the dual variables for As and s. Noting that solving this
equation using matrix inversion is impractical due to the large
size, we use the conjugate-gradient (CG) method to iteratively
find the solution of the normal equation.

The minimization over v1 corresponds to projection of
Asl+1 − dl

1 onto ϵ-radius hyper-sphere with center y, and
is computed as:

vl+1
1 = y +

{
ϵ

Asl+1−dl
1−y

∥Asl+1−dl
1−y∥2

, if ∥Asl+1 − dl
1 − y∥2 > ϵ

Asl+1 − dl
1 − y, if ∥Asl+1 − dl

1 − y∥2 ≤ ϵ

(7)

At last, the minimization over v2 corresponds to the prox-
imal operator for the regularization function, R(| · |), that
operates on the magnitude of a complex-valued vector:

vl+1
2 = ΨαR(|·|)(s

l+1 − dl
2) (8)

where ΨαR(|·|)(.) is the respective proximal operator given by

ΨαR(|·|)(p) = argmin
v

αR(|v|) + 1

2
∥v − p∥22 (9)

with α ∈ R+ tuning the amount of regularization per iteration.
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C. Handling Phase for Regularization on the Magnitude

In this section, we provide the solution of (9) by approach-
ing this optimization problem as a joint minimization over the
phase and magnitude of v. The complex-valued vectors are
re-written as a product of a complex-valued unitary diagonal
phase matrix and a real-valued non-negative magnitude vector:

v = Φv|v|, p = Φp|p| (10)

where Φv = diag(ej∠(v)), Φp = diag(ej∠(p))

With this change of variables, the problem in (9) becomes

arg min
|v|,Φv

αR(|v|) + 1

2
∥
[
|v|
|p|

]
∥22 − |v|TRe{Φ∗

vΦp}|p|

(11)

For any given |v| and |p|, the minimizing phase of (11) must
maximize the elements of Re{Φ∗

vΦp}. That is, the proximal
mapping of a function that operates on the magnitude of a
complex-valued vector must directly pass the phase values of
the proximal point. After inserting this optimal phase solution
to (11), optimization for the magnitude becomes:

ΨαR(·)(|p|) = argmin
|v|

αR(|v|) + 1

2
∥|v| − |p|∥22 (12)

where ΨαR(·) is now the Moreau proximal mapping associ-
ated with the regularization function R(·), and corresponds to
denoising of the magnitude of the proximal point p when the
noise variance is α. A similar derivation for the scalar-valued
case appears in [20].

This result suggests that the proximal update step in (9) can
be computed as

ΨαR(|·|)(p) = ΦpΨαR(·)(|p|) (13)

which corresponds to denoising the magnitude of p using
ΨαR(·) and merging the denoised magnitude with the unpro-
cessed phase of p. In our work, we choose ΨαR(·) as easy-
to-compute proximal operators and compute the multiplication
with the diagonal phase matrix using element-wise products.

Equation (13) decouples the magnitude and phase updates,
and enables us to extend the real-valued proximal operators
to the complex-valued optimization problem in (9). To sum-
marize, each iteration of our PnP reconstruction algorithm
consists of three computationally efficient update steps. The
first step is the scene update given in (6) and carried out
using the CG algorithm. The second step is the projection
given in (7) and efficiently computed using scaling operations.
The last step is the denoising step in (8) which is shown to
be equivalent to (13), and corresponds to directly passing the
phase but denoising the magnitude of the proximal point.

IV. 3D DEEP DENOISER FOR PNP REGULARIZATION

Following the success of convolutional neural networks
(CNN) on denoising [16], [17], [21], we train and deploy a
deep CNN-based Gaussian denoiser for the third step of our
PnP approach. Our denoiser is a 3D U-net developed based
on [22] and is shown in Fig. 1. This denoiser replaces the
proximal operator ΨαR(·) in (13).
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Fig. 1: Network architecture of the proposed deep denoiser.

The proposed denoiser is a 3-level encoder-decoder archi-
tecture with repeated 3D convolutional blocks (C) followed by
batch normalization (B) and ReLU (R). On each level, max
pooling (Max. Pool.) is used to reduce the spatial size of the
input tensor by a factor of 2 in each dimension and transposed
convolution blocks (T.Conv.) are used to increase by 2. At each
decoding level, the output of the transposed convolution block
is concatenated with the encoder outputs. The concatenated
outputs are then fed to the respective decoding blocks. A
single-channel 3D convolution block follows the last decoding
block. The number of output channels of all convolutional
blocks is indicated inside parentheses in the figure.

The input of the U-net is the 3D reflectivity magnitude that
will be denoised and the 3D noise level map. The noise level
map adjusts the amount of denoising in our non-blind denoiser
network and its values are set to the constant α in (12). The
output of the U-net is the 3D denoised reflectivity magnitude.

V. EXPERIMENTS

A. Simulation Setting

To illustrate the performance of the developed approach, we
consider an application in microwave imaging with a com-
monly used 2D Mill’s Cross array [3]. Physical dimensions
of the antenna array and the scene of interest are shown in
Fig. 2. On the MIMO array, 13 transmitter and 12 receiver
antennas uniformly span the diagonals of the 2D antenna plane
in a cross configuration. The frequency, f , is swept between
4 GHz to 16 GHz with 15 uniform steps.
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Fig. 2: Illustration of the imaging setting.

The theoretical resolution of this MIMO system is 2.5 cm
in the cross-range directions, and 1.25 cm in the down-range
direction [3]. We discretize the reflectivity distribution inside
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the scene of interest using a sampling period of 1.25 cm for
x, y directions, and 0.625 cm for z direction. For the scene of
interest in Fig. 2, this results in an image cube of size 25 ×
25×49. Hence the compressive imaging task is to reconstruct
this image cube with ∼ 8% data (M/N ).

Because a large experimental dataset is not available for mi-
crowave imaging, we use a synthetic dataset [23]. This dataset
consists of randomly generated 800, 100, and 100 complex-
valued image cubes of size 25× 25× 49 for training, testing,
and validation, respectively. The magnitude of these image
cubes is obtained by randomly generating 15 points within the
cube and passing them through a 3D Gaussian filter to obtain
volumetric objects. The scene magnitudes are normalized via
the sigmoid function to the range [0, 1]. Moreover, each scene
voxel has random phase that is independently drawn from a
uniform distribution between 0 and 2π.

B. Training of the 3D Deep Denoiser for PnP Regularization

We train our deep denoiser by minimizing the mean squared
error between the ground truth magnitudes and Gaussian noise
added magnitudes on 800 training scenes. We use a batch
size of 16 with the maximum number of epochs set as 2000.
We utilize Adam optimizer [24] with an initial learning rate
of 10−3, and drop the learning rate by a factor of 10 if the
validation loss does not improve for 25 epochs. We stop the
training if the validation loss does not improve for 50 epochs.
At the end of the training, we use the network weights that
corresponds to the minimum validation loss.

At each iteration of training, a new Gaussian noise realiza-
tion is added to each ground truth magnitude by randomly
and uniformly choosing the noise standard deviation, σν ,
from the interval [0, 50

255 ]. In addition, the constant noise level
map is formed using the value of noise variance, α = σ2

ν ,
and concatenated to the noisy magnitude. Hence the denoiser
network learns to denoise the reflectivity magnitudes in a non-
blind manner by providing the noise level map as input.

Training takes approximately 15 minutes on NVIDIA
GeForce RTX 3080 Ti GPU using PyTorch 1.12.0 with CUDA
Toolkit 11.6.0 in Python 3.10.6.

C. Results

We simulate the measurements using the model in (2) with a
signal-to-noise ratio (SNR) of 30 dB, where SNR is defined as
10 log10

(
∥As∥2

2

M ·σ2
n

)
. We comparatively evaluate the performance

with the back-projection algorithm, isotropic total variation
(TV) and learned PnP regularization. For TV regularization
on the reflectivity magnitude, we utilize Chambolle algorithm
[25] for denoising the magnitude in (13). We call our magni-
tude TV and learned PnP-based C-SALSA algorithms TVCG-
CSALSA and NNCG-CSALSA, respectively.

We initialize C-SALSA iterations using s0 = AHy
max(|AHy|) .

At each s-update-step, the conjugate gradient algorithm is run
for 5 inner iterations. For NNCG-CSALSA, we choose the
number of C-SALSA iterations as 30. For TVCG-CSALSA,

we run Chambolle algorithm for 5 inner iterations for each v2-
update-step. We terminate TVCG-CSALSA when the relative
change in magnitudes ∥|s|l+1−|s|l∥2

∥s|l∥2
drops below 5 · 10−4.

For TVCG-CSALSA, the iterations converge to a solution
for a sufficiently large κ in (6), which is set in our case to
κ = 5 ·104. For NNCG-CSALSA, the value of κ is optimized
using the validation dataset, and is set to κ = 5 · 102. For
both of the algorithms, the α parameter in (13) determines the
amount of regularization in each iteration. We also search for
the optimal value of α using the validation dataset, and set
it to 3 · 10−3 and 7 · 10−2 for TVCG-CSALSA and NNCG-
CSALSA, respectively.

Although the reconstructed reflectivity distribution is
complex-valued, its phase is random and does not contain any
useful information. For this reason, we evaluate the perfor-
mance of the methods on the normalized magnitudes. We use
3D peak signal-to-noise ratio (PSNR) and 3D structural simi-
larity index measure (SSIM) [26] as quantitative performance
metrics. The average performance of the algorithms on the test
dataset consisting of 100 image cubes are given in Table I.

TABLE I: Average Performance on the Test Dataset

Algorithm Iterations Seconds PSNR (dB) SSIM
Back-Projection 1 0.26 21.71 0.235
TVCG-CSALSA 361 21 24.26 0.296
NNCG-CSALSA 30 2.3 29.30 0.851

In terms of average PSNR/SSIM, the developed PnP method
NNCG-CSALSA with 3D deep prior significantly outperforms
other methods by achieving the highest average performance
of 29.30/0.851. TVCG-CSALSA has the second-highest per-
formance with 24.26/0.296, whereas the performance of the
back-projection is 21.71/0.235. Although the back-projection
algorithm is the fastest with 0.26 seconds of average runtime,
its reconstructions contain many artifacts. On the other hand,
the developed PnP method with deep prior provides good
image quality with a runtime of only 2.3 seconds. TVCG-
CSALSA is the slowest method among the tested algorithms
with an average runtime of 21 seconds.

To visually compare the results, we also provide in Fig. 3 the
magnitude of the reconstructions for a sample test image. As
seen, NNCG-CSALSA provides the best image quality with
its reconstruction closely resembling the ground truth. While
the back-projection result largely fails with many reconstruc-
tion artifacts, TVCG-CSALSA reconstruction contains over-
smoothing where the two separate clusters on the ground truth
now appear connected. Moreover, an artifact is also present
on the upper part of the TVCG-CSALSA result. On the other
hand, NNCG-CSALSA successfully reconstructs the ground
truth image cube consisting of two separate clusters in this
highly compressed observation setting with ∼ 8% data.

VI. CONCLUSION

In this paper, we developed a novel PnP method for
reconstructing the 3D complex-valued reflectivity distribu-
tion of a scene from sparse near-field MIMO measurements.
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(a) Back-Projection Output (b) TVCG-CSALSA Output (c) NNCG-CSALSA Output
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Fig. 3: Example reconstructions from the test dataset. From left to right, reconstruction PSNRs (SSIMs) on the test image are
20.07 (0.147), 25.60 (0.308), and 30.86 (0.900).

The experimental results suggest that significant performance
improvement can be achieved with learned 3D priors that
jointly exploit correlations along range and cross-range di-
mensions. Our approach provides a generalizable means for
effectively handling arbitrary regularization on the magnitude
of a complex-valued unknown and can be applied to other
radar image formation problems (including SAR) with similar
prior information.
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