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Abstract—Learning-based reconstruction methods have shown
state-of-the-art (SOTA) performance for compressive spectral
imaging (CSI). However, the training setup dependence causes
slight variations in the scene’s statistical distribution or cal-
ibration errors in the sensing matrix producing poor testing
reconstruction quality. Therefore, we propose a computational
calibration methodology to improve any CSI reconstruction
deep neural network (DNN) testing quality and robustness.
Specifically, similar to transfer learning, we rethink the deep
image prior framework to retrain a SOTA DNN for a particular
CSI measurement without retraining the DNN from scratch.
Experimental results show an average peak signal-to-noise ra-
tio improvement of 5.5dB when slight variations in the CSI
measurement and calibration errors in the sensing matrix are
considered. Additionally, even when no variations are considered,
the proposed calibration methodology improves in up to 2.3dB
the reconstruction quality.

Index Terms—Compressive Spectral Imaging, Deep Neural
Networks, Deep Image Prior, Spectral Imaging Calibration.

I. INTRODUCTION

Snapshot compressive spectral imaging (CSI) acquires the
spatial-spectral information of a spectral image (SI) in a set of
2D projected measurements through CSI optical systems [1],
[2]. The SI is reconstructed from the 2D projected measure-
ments by computational algorithms, covering optimization-
based [3], [4] and learning-based [5], [6] approaches. In par-
ticular, deep-learning (DL) based methods employ SI datasets
to train a deep neural network (DNN), whose weights are
optimized concerning a subset of the entire SI dataset, known
as the training dataset, achieving state-of-the-art (SOTA) CSI
reconstruction quality [7], [8].

The training of DNNs commonly requires high-performance
computing equipment, takes a long time to optimize, and,
in the case of CSI reconstruction, the performance highly
depends on the training dataset statistical distribution and
accurate modeling of the CSI optical system. Expressly, the
sensing matrix modeling the physical implementation is as-
sumed to be ideal, exactly known and accurately simulated
for the training and inference steps [5], [6]. Consequently,
when a CSI system is implemented in the laboratory to acquire
real 2D projected measurements, the performance of DL-based
methods drops due to the acquisition system degradation given
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by the environmental conditions that are not considered during
the training process. Furthermore, even if the system optical
elements uncertainty is modeled, the acquisition of the real 2D
projected measurements can not be accurately modeled due to
the high real-world complexity [9].

In contrast, the deep image prior framework (DIP) [10]
reconstructs a SI by considering the DNN as a prior, which is
optimized using only the acquired 2D projected measurements,
without relying on a training dataset [11]. The DIP is usually
divided into three sequential components. (i) The input compo-
nent corresponds to the 2D projected measurements or random
noise. (ii) The central component is formed by the network
that produces the reconstructed SI. (iii) The output component
calculates the estimated 2D projected measurements from
the reconstructed SI through the modeled sensing matrix.
Despite the advantage of DIP to reconstruct a SI from the
2D projected measurements without relying on a training
dataset, the optimization process is commonly computationally
expensive and unstable when adjusted from scratch [12].

Therefore, this paper proposes a computational calibration
process where pre-trained CSI reconstruction DNNs can be
adjusted with only the 2D projected measurements and the
sensing matrix of an implemented CSI optical system setup.
The proposed methodology adjusts the SOTA DNN weights
for each image input by minimizing a proposed loss func-
tion that only considers the real 2D projected measurements
and the real sensing matrix, where the reconstructed SI is
obtained at the central component of the framework. The
methodology is validated over two DNNs using Bayesian
frameworks [5], [6], whose training model and pre-trained
weights are publicly available. The proposed method improves
the CSI reconstruction in more than 5dBs when degradation
errors in the sensing matrix are considered. Additionally, even
when ideal 2D projected measurements and ideal sensing
matrix are employed, the proposed method achieves a gain
of more than 2 dB in the SI reconstruction.

II. LEARNING-BASED COMPRESSIVE SPECTRAL IMAGING
RECONSTRUCTION

CSI optical systems are specialized cameras that contain
coding and shared optical elements for compressing a SI.
The most popular CSI optical system is the coded aperture
snapshot spectral imager (CASSI) [2], whose optical path
consists of a coded aperture, followed by a dispersive prism
and a 2D sensor that receives the shifted modulated light501ISBN: 978-9-4645-9360-0 EUSIPCO 2023



forming the 2D projected measurements. The sensing process
can be represented in a linear form as

y = Hf + η, (1)

where f ∈ Rn is a vector representation of the SI, H ∈ Rm×n,
m ≪ n is the sensing matrix, y ∈ Rm denotes the 2D
projected measurements, and η ∈ Rn denotes the optical
system noise, generally modeled with a statistical distribution,
such as N (µ, σ2) [13].

A. Deep Learning-based Reconstruction Methods

Consider a DNN Mθ(·) with θ adjustable weights, a dataset
{f (i)}Mi=1 with M SIs, and a simulated sensing matrix H. The
2D projected measurements for each SI can be simulated as
y(i) = Hf (i), building a paired dataset {y(i), f (i)}Mi=1. The
CSI reconstruction DNN can then be trained by solving the
optimization problem

θ̂ = argmin
θ

M∑
i=1

||f (i) −Mθ(y
(i))||22, (2)

where θ̂ are the DNN optimized weigths.
Figure 1 a) depicts the pipeline of the CSI reconstruction

process training a DNN with the built dataset. Usually, the
training process requires many epochs and long training times.

B. Real Sensing Matrix Modeling

Typically, the sensing matrix H used during the training
step only considers an ideal environment, assuming that the
illumination is perfectly continuous and constant over the
scene [9]. Nonetheless, obtaining the same sensing behavior in
real laboratory implementations is impossible due to environ-
mental conditions and calibration errors, even when carefully
manufacturing and aligning the trained parameters of H.

Therefore, a calibration step is carried out, characterizing
the camera’s light response to model the real sensing matrix.
The characterization process can be formulated as follows

Hr = D(H), (3)

where D : Rm×n → Rm×n models the real implementation
artifacts, and Hr denotes the real sensing matrix. In the case,
the operator D can be modeled as a blur degradation in the
coded apertures, with various degradation levels.

III. RETHOUGHT DEEP IMAGE PRIOR FOR COMPRESSIVE
SPECTRAL IMAGING CALIBRATION

The DIP is an unsupervised framework that considers the
DNN Mθ(·) as prior information, optimized using only the
2D projected measurements y and the sensing matrix H by
solving

θ̂ = argmin
θ

||y −HMθ(z)||22, (4)

where θ̂ connotes the optimized weights, and the recovered SI
is calculated as f̂ = Mθ̂(z) with z ∼ N (0, 1).

Fitting the weights θ̂ from scratch requires high iterations
and does not guarantee proper reconstructions due to the inher-
ent non-convex nature of the problem [12]. Hence, we rethink

Fig. 1. Pipeline of the proposed calibration method for CSI reconstruction.
a) A SOTA DNN is trained with a SI dataset using an ideal sensing matrix H
and ideal calculated 2D projected measurements y. b) The pre-trained SOTA
DNN is retrained with the DIP framework, modeling the CSI optical system
as an optical encoder layer after reconstructing the SI, where only the real
2D projected measurements yr and real sensing matrix Hr are considered.

the DIP framework to retrain the DNN Mθ̂(·), previously
trained with a simulated sensing matrix H and simulated 2D
projected measurements y, adjusting the DNN weights taking
into account a real sensing matrix Hr and real 2D projected
measurements yr.

Figure 1 b) illustrates the proposed calibration methodology
referred to as a ReDIP, where the DNN structure and the
sensing matrix are in inverted locations compared to the
traditional training setup in Fig. 1 a). Notice that only the real
2D projected measurements yr from a single SI is employed
in ReDIP, where the retraining acts as a calibration step using
a few iterations compared to applying DIP from scratch.

The proposed computational calibration method is modeled
with the following optimization problem

θ∗ = argmin
θ̂

||yr −HrMθ̂(yr)||22, (5)

where θ∗ denotes the optimal weights for calibrating the
real 2D projected measurements yr, and the calibrated recon-
structed SI is calculated as f∗ = Mθ∗(yr).

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

The proposed methodology can be employed for any SOTA
DNN. Therefore, we selected two DNNs based on Bayesian
frameworks with publicly available implementation and pre-
trained weights. These works employed the CASSI system for
acquiring a single snapshot with a coded aperture with 0.5 of
transmittance.

• Deep Gaussian Scale Mixture Prior (DGSMP) [5],
based on the maximum posterior estimation. DGSMP502



learns the Gaussian scale mixture prior (GSM) to exploit
the SI spectral correlations and the GSM local means.

• Mask Modeling Uncertainty (MMU) [6], which models
the coded aperture uncertainty to treat hardware miscal-
ibration inspired by variational Bayesian learning while
performing a bilevel optimization to optimize the SI.

DGSMP and MMU receive the 2D CASSI projected mea-
surements as input and return the reconstructed SI as the
output. For the retraining step, the hyperparameters for both
DNNs are kept similar to the original implementations, with
the following main differences: we use only one batch, corre-
sponding to the real 2D projected measurements, we use the
real sensing matrix to retrain the model using the proposed
loss function introduced in (5), and we perform 500 gradient
iterations.

The experiments employed the KAIST SI dataset [14],
containing 30 SIs with a spatial resolution of 2704 × 3376
and 31 spectral bands. Following the testing setup in [5], [6],
we used 10 scenes from the KAIST dataset with a spatial
resolution of 256×256 and 28 bands. Specifically, we use each
testing scene to retrain the SOTA DNN following the proposed
calibration method. In this setup, the 2D CASSI measurement
results in a compression level of ≈ 0.04.

The quality of the CSI reconstructions is presented in terms
of the peak signal-to-noise ratio (PSNR), the spectral similarity
index (SSIM) metric, and the spectral angle mapper (SAM),
which were calculated according to the implementation in [11].

B. Calibration Errors Experiment

This experiment analyses the robustness of the proposed
ReDIP under calibration errors in the sensing matrix. The
calibration errors are emulated by perturbing the coded aper-
ture with different blurring levels. The resulting degraded
sensing matrix is then used to acquire the corresponding 2D
compressed measurements.

The experiment evaluates four blurring levels denoted by
Di, i = 0, 1, 2, 3, where D0 refers to no blurring, and D3 refers
to the maximum blurring level. For implementation purposes,
the blurring levels were applied in the frequency domain
following the Matlab function Lowpass with the thresholds
tr = {1, 0.8, 0.7, 0.5} for each degradation level, respectively.

Figure 2 depicts a coded aperture with each blurring level
and the resulting measurements yr. Visually, the introduced

Fig. 2. (Top) Visualization of a sub-region of the degraded coded apertures
when perturbing with four different degradation levels following (3) (Bottom)
Visualization of the acquired 2D compressed measurements using the corre-
sponding degraded matrices over the scene #02 in the dataset. The PSNR
measures the loss of similarity in the 2D projected measurements.

perturbations in the coded aperture do not appear to affect
the measurements. However, when the 2D projected measure-
ments obtained with degraded coded apertures are compared to
the obtained with no degradation, the PSNR metric indicates
a significant loss in the similarity, which is reflected when
reconstructing the underlying SI. Therefore, a precise fit is
needed to improve the reconstruction quality.

Table I summarizes the quantitative quality results when
using the DGSMP and MMU models across the four degrada-
tion levels. The “Baseline” column refers to the performance
obtained from the pre-trained SOTA DNNs, and the “ReDIP”
column refers to the performance obtained when applying the
proposed computational calibration method.

The SI reconstructions obtained with the proposed ReDIP
for all tested degradation scenarios achieve a higher per-
formance against the baseline reconstructions. Specifically,
for the D1, D2 and D3 degradation levels, the performance
outperforms the baseline in up to 7.8dB and 5.6dB for DGSMP
and MMU, respectively. On the other hand, in the scenario
where ReDIP is employed when there is no degradation, i.e.,
using D0, the gain is up to 4.7dB and 2.3dB, respectively.
Such results suggest that the developed retraining scheme can
improve even the testing results of any SOTA reconstruction
method since the weights are iteratively adapted for each
specific testing image.

Figure 3 presents an RGB mapping of the SI reconstructions
for scenes 02 and 09 for visual comparisons. It can be seen a

TABLE I
AVERAGE AND STANDARD DEVIATION OF THE RECONSTRUCTION QUALITY ACROSS 10 KAIST TESTING SCENES IN TERMS OF PSNR [DB], SSIM

AND SAM [RAD].

Degradation Method PSNR [dB] SSIM SAM [rad]
DGSMP MMU DGSMP MMU DGSMP MMU

D0
Baseline 30,28 ± 3,09 31,85 ± 2,89 0,92 ± 0,02 0,93 ± 0,01 0,16 ± 0,03 0,14 ± 0,02
ReDIP 34,97 ± 4,18 34,19 ± 3,95 0,96 ± 0,02 0,95 ± 0,02 0,09 ± 0,02 0,12 ± 0,03

D1
Baseline 21,70 ± 3,09 19,48 ± 2,96 0,71 ± 0,10 0,64 ± 0,09 0,27 ± 0,06 0,48 ± 0,05
ReDIP 29,78 ± 3,61 26,44 ± 4,03 0,89 ± 0,04 0,80 ± 0,07 0,14 ± 0,04 0,27 ± 0,11

D2
Baseline 22,75 ± 2,96 21,59 ± 2,95 0,77 ± 0,08 0,72 ± 0,07 0,26 ± 0,05 0,37 ± 0,05
ReDIP 30,57 ± 3,46 27,67 ± 4,25 0,91 ± 0,03 0,83 ± 0,06 0,13 ± 0,04 0,24 ± 0,08

D3
Baseline 21,07 ± 2,90 22,70 ± 2,91 0,73 ± 0,09 0,77 ± 0,07 0,30 ± 0,06 0,26 ± 0,02
ReDIP 29,62 ± 3,77 28,32 ± 3,97 0,90 ± 0,03 0,87 ± 0,05 0,16 ± 0,05 0,22 ± 0,04
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Fig. 3. Qualitative CSI reconstruction results over the testing scenes #02 and #09. (Top): RGB mapping of the SI reconstruction from the baseline (pre-
trained DNN) and the proposed method (ReDIP) across three degradation levels D0, D2, and D3, and for both DGSMP and MMU methods. (Bottom): RGB
mapping of the ground truth SI with the spectral signature comparison of the pixel located at the middle position for each scenario.
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significant improvement with the proposed calibration method,
especially under strong degradation scenarios, where the pre-
trained DNNs performance drops due to the slight variations in
the 2D projected measurements not considered in the training.
Additionally, Fig. 3 shows the spectral signature comparison
corresponding to the central spatial pixel from the ground
truth, the baseline, and the ReDIP reconstructions. Notice that
in all the evaluated degradation levels, the spectral signature
recovered with the proposed method is more similar to the
ground truth than the baseline’s spectral signature in terms of
the SAM metric. The improvement of the spectral domain can
be better seen in the highest degradation scenarios, where the
baseline reconstruction entirely deviates from the ground truth
spectral signature.

C. Weights Adjustment Analysis

This experiment analyzes visually how the weights of the
pre-trained DNN and the obtained quality metrics vary in
the reconstruction problem and how the proposed ReDIP
calibration methodology improves the results. The experiment
was carried out over the baseline DGSMP DNN and the
proposed DGSMP ReDIP for D0 and D3 degradation levels
using scene #02.

To illustrate the influence of the retraining step, one single
weight θ from the DNN Mθ was adjusted manually, exploring
how the reconstructed SI f̂ quality and the loss with respect
to the measurements y varies under the degradation scenarios.
The default value of the trained weight θ is shown in the dot
point in blue in Fig. 4 for the trained scenario D0; for this case,
if the parameters are moved from the optimal, good perfor-
mance is maintained and when the ReDIP is employed (dark-
blue solid line) a better performance is obtained by slightly
adjusting the selected weight. However, when the degradation
scenario occurs (orange dot line), the performance decreases
by maintaining the same weights. Notice that manually adjust-
ing the weights, represented in the orange dot lines, suggests
that a better stationary point can be achieved. Therefore, by
applying the ReDIP methodology in this degradation scenario,
the performance is not only similar to the scenario with no
degradation, but the optimal value is shifted a bit from its
starting value, which makes sense due to the 2D projected
measurements and the sensing matrix changes with respect to
the original one.

V. CONCLUSIONS

A computational calibration method for SI reconstruction
considering the DIP framework was proposed. A qualitative
and quantitative improvement over the performance of a pre-
trained SOTA DNN concerning real 2D projected measure-
ment and real sensing matrix is achieved in different degrada-
tion scenarios. A convergence analysis is done over D0 and D3

degradation scenarios, where it can be seen that the adjustment
of the weights moves slightly from the baseline, allowing to
improve in the SI performance by 5 dB when the degradation
is considered and also 5 dB when no degradation is applied.

Fig. 4. Influence of the ReDIP calibration method under degradation scenarios
D0 and D3 with respect to one single parameter θ from the DGSMP model
Mθ with the scene #02. The baseline (blue and orange dot lines) indicates
the measurement and reconstruction performance of the trained model for
the corresponding dataset. ReDIP (dark-blue and gold solid lines) represents
the improvement provided by our proposed method according to the shown
direction. Each big dot represents the default achieved parameter value.
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