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Abstract—Pose Guided Person Image Generation (PGPIG) is
the task that transforms the pose of a person’s image from the
source image, its pose information, and the target pose infor-
mation. Most existing PGPIG methods require additional pose
information or tasks, which limits their application. Moreover,
they use CNNs, which can only extract features from neighboring
pixels and cannot consider the consistency of the entire image.
This paper proposes a PGPIG network solving these problems by
using a module containing Axial Transformers with large recep-
tive field. The proposed method disentangles the PGPIG task into
two subtasks: “rough pose transformation” and “detailed texture
generation”. In the former task, low-resolution feature maps are
transformed by blocks containing Axial Transformer. The latter
task uses a CNN network with Adaptive Instance Normalization.
Experiments show that the proposed method has competitive
performance with other state-of-the-art methods. Furthermore,
despite achieving excellent performance, the proposed network
has a significantly fewer parameters than existing methods.

Index Terms—Machine Learning, Deep Learning, Pose Guided
Person Image Generation, Pose Transfer, Transformers

I. INTRODUCTION

Pose Guided Person Image Generation (PGPIG) is the task
that transforms the pose of a person image from the source
image, its pose information and the target pose information.
PGPIG has been applied to human images/videos generation
and person re-identification [6], [7], [20], [27].

PGPIG has two problems: it needs to deal with the sig-
nificant pose change, and it should be consistent with the
entire image. To deal with the former problem, existing
methods use additional parsing maps with semantic person
information for training [17], [18], [28] or set up additional
tasks to capture useful features [17], [21], [28], [29]. However,
preparing additional data is laborious and setting up additional
task increases training time and makes hyper-parameters more
difficult to determine.

Existing networks use CNNs that can extract features only
from neighboring pixels. Therefore, extracting enough features
between the source and target information is difficult, and they
cannot take into account overall image consistency.

In this paper, we propose a network to solve these prob-
lems of existing methods. The architecture of the proposed
network is shown in Fig. 1. The proposed method uses Axial
Transformer [10] with large receptive field. Therefore, it does
not require additional data or tasks to deal with significant
pose change and can also take into account the consistency
of the entire image. Since nothing additional is required, the

proposed method can achieve a very small number of pa-
rameters compared to existing state-of-the-art methods. In the
proposed method, PGPIG is disentangled into two subtasks,
“rough pose transformation” and “detailed texture generation”,
which are processed by different modules. The problems of
significant pose changes and overall image consistency are
integrated into the “rough pose transformation”. The “rough
pose transformation” is performed with an Axial Transformer
Transformation Block (ATTB) (Fig. 2 (a)). The “detailed
texture generation” is transformed by the CNN Transformation
Block (CTB) (Fig. 2 (b)).

Transformer-based modules are suitable for solving PG-
PIG’s problems because they have wide receptive fields. How-
ever, the transformer-based module is often computationally
costly when calculating large feature maps. While Axial
Transformer Transformation Block is the transformer-based
module, it can reduce the computational cost while keeping
wide receptive field. ATTB is applied to only low-resolution
feature maps, which further reduces the computational cost.

In PGPIG, “detailed texture generation” does not need a
wide receptive field because texture patterns do not have long-
range dependencies. Therefore, we address this subtask by
transforming high-resolution feature maps with CTB using
CNNs as feature extractors.

Experiments show that the proposed method has competitive
performance both quantitatively and qualitatively compared to
existing state-of-the-art PGPIG methods. The main contribu-
tions of this paper are as follows:

• This paper proposes a network that solves the PGPIG
problems of significant pose transformation and overall
image consistency without adding extra data and task
by using the module including Axial Transformer. The
proposed method disentangles PGPIG into “rough pose
transformation” and “detailed texture generation”. The
former is processed by Axial Transformer Transforma-
tion Block (ATTB) and the latter is processed by CNN
Transformation Block (CTB).

• Experimental results show that the proposed method is
competitive with the existing state-of-the-art methods.
Furthermore, the number of parameters of the proposed
network is tiny (8.83M), which is only 7.54% of the size
of SPGNet [17], one of the state-of-the-art methods.
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Fig. 1. Overall structure of the proposed network.

II. RELATED WORKS

A. Pose Guided Person Image Generation (PGPIG)

Tang et al. [25] proposed a method that cross pose informa-
tion and appearance information. However, vanilla CNN-based
modules cannot address significant pose transformations. Li et
al. [14] and Ren et al. [21] proposed methods that estimate
the optical flow and warp the input image to generate images.
However, due to significant pose changes or occlusions, the
optical flow estimation may fail, resulting in low-quality
images. In addition, the optical flow estimation is often trained
separately from the main body of the network. Therefore, it
requires time-consuming hyperparameter tuning and increases
the training time. Ma et al. [18], Li et al. [17], and Zhang et
al. [28] proposed a network using additional person parsing
maps to improve the quality of PGPIG. Their method first
estimates the parsing map and then generates the final image.
However, preparing the parsing maps is laborious, and the
parsing maps themselves are often unreliable. Zhang et al. [29]
proposed a method which adopts Siamese Network [13]. It
makes the network efficiently capture the texture information
by learning the source-to-source identity mapping as an aux-
iliary task. However, the auxiliary task increases the number
of hyper-parameters, increasing the learning difficulty.

B. Axial Attention, Axial Transformer

Axial Attention [10] is one of the attention methods for
multidimensional tensors, and Axial Transformer [10] is a
Transformer that employs Axial Attention for Multi Head
Attention. Transformer-based networks [5], [15], [19] have the
drawbacks that the computational cost increases rapidly as the
input image resolution. Axial Transformer effectively reduces
the computational cost without narrowing the receptive field in
the vertical and horizontal directions. Specifically, for a tensor
whose input size is R × R × C, the computational cost in
standard attention is O(R4C), whereas it is O(2R3C) in Axial
Attention [10].

C. Conditional Positional Encoding

Since Transformer-based modules cannot capture the po-
sitional relationships of feature maps, a module that embeds
the positional relationships into the feature maps is needed.
Modules which embed positional relationships into a feature
map is called positional encoding [26]. Conditional Positional

Encoding (CPE) [4] is one of the positional encoding methods
for multidimensional tensors. Unlike standard positional en-
coding methods [22], [26], CPE can take into account absolute
positional information which is helpful for networks [4], [23].

III. PROPOSED METHOD

The entire proposed network is shown in Fig. 1. Many
existing methods require additional data and tasks. In contrast,
the proposed method requires no additional data or tasks.

The proposed network combines the source person image
and its pose information (denoted as Is) as input and ex-
tracts multi-scale shallow features with the Shallow Feature
Extraction module. The proposed method tackles PGPIG by
disentangling it into “rough pose transformation” and “de-
tailed texture generation” tasks. Among the extracted features,
low-resolution feature maps with global features are trans-
formed by Axial Transformer Transformation Block (ATTB)
for “rough pose transformation”. High-resolution features are
transformed by the CNN Transformation Block (CTB) for
“detailed texture generation”. We denote the part with the
same resolution as Fsi in Fig. 1 as level L = i The kernel
sizes of Conv2d in Shallow Feature Extraction and CTB are
7 (at L = 0, 1), 5 (at L = 2) and 7 (at L = 3, 4).

A. Shallow Feature Extraction

Shallow Feature Extraction, shown in Fig. 2 (a), is a module
for extracting shallow features from the input information Is.
Shallow Feature Extraction is a multi-scale module with output
Fsi(i = 0, 1, 2, 3, 4, 5). When the size of Is is H × W , the
size of Fsi is H

2i ×
W
2i . The number of channels and depth of

each layer are 128, 2 for L = 0, 1 and 64, 4 for L = 2, 3, 4.

B. Axial Transformer Transformation Block (ATTB)

The Axial Transformer Transformation Block (ATTB) is
the module shown in Fig. 2 (b). ATTB consists of an N -
layer Axial Transformer Encoder-Decoder block. The input
to the encoder is the feature Fsi extracted from the Shallow
Feature Extraction, or F ∗

si. F
∗
si is the concatenation of Fsi and

F ′
s(i−1) which is the output from ATTB at the lower resolution.

The input to the decoder is the target pose information Pti.
Conditional Positional Encoding (CPE) is used for positional
encoding on each input. The number of channels and the value
of N in the encoder and decoder are 64 and N = 2 for L = 3,
128 and N = 2 for L = 4, and 128 and N = 4 for L = 5.

The resolution of Pti is H
2i × W

2i if the resolution of the
input image is H×W . The proposed method does not use the
full-resolution pose information but instead downsamples the
pose information by Max Pooling and then feeds it into the
network. The pose information inputted to ATTB is Pt3, Pt4,
and Pt5. Each resolutions of pose information are H

23 × W
23 ,

H
24 × W

24 , and H
25 × W

25 . ATTB processes only low-resolution
feature maps to reduce the computational cost.

C. CNN Transformation Block (CTB)

The CNN Transformation Block (CTB) is the module shown
in Fig. 2 (c). We adopt AdaIN for taking advantage of the fact
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Fig. 2. Details of each module of the proposed network.

that textures rarely change in the PGPIG task. CTB process
only high-resolution feature maps to address “detailed texture
generation.” The content input to AdaIN is the F ′

s(i−1) and the
style input is the output of a three-layer network that processes
the mean and standard deviation of Fsi. For the number of
channels and the value of N in CTB are 64 and N = 4 for
L = 0, 1 and 64 and N = 6 for L = 2.

D. Loss Function

The loss functions of the proposed method are (1) and (2).
Ladv is the adversarial loss, same objective as WGAN [1]. A
standard 6-layer CNN network was used for the discriminator.
Ll1 is the mean absolute error between the generated image
and ground truth. Lperc is the Perceptual Loss [11] with
VGG19 [24] as the feature extractor. Lstyle is the Style
Loss [11] with VGG19 [24] as the feature extractor. gp is
the Gradient Penalty [8], which is employed to stabilize the
learning. λi(i = 1, 2, 3, 4, 5) is a hyper-parameter to adjust the
loss ratio.

LG = λ1Ladv + λ2Ll1 + λ3Lperc + λ4Lstyle (1)

LD = λ1Ladv + λ5gp (2)

IV. EXPERIMENT

A. Set Up

Datasets: Deep Fashion [16] and Market-1501 [31] are used
for quantitative and qualitative comparisons. These datasets
are commonly used in PGPIG tasks [17], [21], [25], [29].
Deep Fashion is a dataset consisting of 52,712 high-quality
images of clothed persons with clean white backgrounds. The
resolution of the images is 256 × 176. Market-1501 is a
dataset of 263,632 images of people with various viewpoints,
illumination and backgrounds. The resolution of the images is
128 × 64. The human pose information (18 joint keypoints)
are extracted from OpenPose [3]. For a fair comparison, we
split the datasets as [21].
Metrics: Following existing methods [21], [25], we adopt
Learned Perceptual Image Patch Similarity (LPIPS) [30], In-
ception Score (IS) [2] and Fréchet Inception Distance (FID) [9]
as evaluation metrics.
Hyper Parameters: We set λ1 = 1, λ2 = 2.5, λ3 =
0.25, λ4 = 250, λ5 = 10. The batch size is 8, and the number

TABLE I
QUANTITATIVE COMPARISON OF THE PROPOSED METHOD WITH SEVERAL

STATE-OF-THE-ART METHODS. THE BEST VALUES ARE IN BOLD, THE
SECOND BEST VALUES ARE UNDERLINED.

DeepFashion Market-1501
LPIPS↓ IS↑ FID↓ LPIPS↓ IS↑ FID↓ #Params

XingGAN [25] 0.2929 2.878 44.808 0.3059 3.201 37.510 44.84M
GFLA [21] 0.1869 2.856 7.332 0.2815 2.849 28.042 14.04M
MUST [18] 0.2467 2.971 17.220 - - - 51.45M
SPGNet [17] 0.2109 2.711 11.964 0.2777 2.942 30.520 117.13M

PISE [28] 0.2084 2.815 9.905 - - - 64.00M
DPTN [29] 0.1966 2.867 9.683 0.2711 2.965 28.678 9.79M

Ours 0.1849 2.944 8.034 0.2939 3.091 23.307 8.83M

of training steps is 500,000 for Deep Fashion and 100,000 for
Market-1501. In both datasets, the learning rate is 1.0× 10−4

for both the generator and the discriminator. Learning rate
decay is used in the training phase, with the learning rate
multiplied by 0.1 for 250,000 and 400,000 steps in Deep
Fashion and 50,000 and 80,000 steps in Market-1501. The
optimizer is Adam [12], and we set β1 = 0.5 and β2 = 0.999.

B. Quantitative Comparison

We compare the proposed method with several state-of-the-
art methods [17], [18], [21], [25], [28], [29]. The results of
the quantitative comparison of generated images and model
size are shown in Tab. I. This table shows that the proposed
method is competitive with the state-of-the-art methods, with
the first or second best performance in five of the six evaluation
metrics. Most of the existing methods in Tab. I require
additional parsing maps (MUST, SPGNet, PISE) or additional
task setup and training (GFLA, SPGNet, DPTN). However,
the proposed method does not use these additional elements
and still achieves excellent performance. The proposed method
is convenient and easy for application since it is free from
laborious data preparation and tuning many hyperparameters.

The number of parameters in the proposed network is
8.83M, less than any state-of-the-art methods listed in Tab. I.
This is 7.54% of SPGNet (117.13M). The proposed network
is a tiny network, yet it achieves excellent performance.

C. Qualitative Comparison

Fig. 3 shows a qualitative comparison of the proposed
method with several state-of-the-art methods. The left side
of Fig. 3 shows the Deep Fashion validation images, and
the right shows the Market-1501 validation images. Although

508



Input Input
Xing
GAN

GFLA MUST
SPG
Net

PISE DPTN OursGT
Xing
GAN

SPG
Net

GFLA DPTN OursGT

Fig. 3. Qualitative comparison between the proposed method and several state-of-the-art methods. The left side is an image generated by Deep Fashion and
the right side is an image generated by Market-1501.

TABLE II
VALUES OF THE EVALUATION METRICS IN DEEP FASHION WHEN THE

AXIAL TRANSFORMER PART OF ATTB IS REPLACED BY CNN AND SWIN
TRANSFORMER (SWINT). THE VALUES WITH THE BEST ACCURACY ARE

IN BOLD.

LPIPS↓ IS↑ FID↓
CNN 0.2020 2.846 8.935

SwinT 0.2187 2.814 9.541
ATTB 0.1849 2.944 8.034

XingGAN produces blurred images, the proposed method,
which also requires no additional data or tasks, produces
images of the competitive quality as state-of-the-art methods
that require additional data or tasks.

In the Deep Fashion image in the fourth row of Fig. 3,
all methods except the proposed method and DPTN produce
ambiguous images, whether short pants or long pants. Some
of these methods generate unnatural textures in the fifth row of
Fig. 3. This is because these methods mainly use CNNs which
can extract features only from neighboring pixels. This makes
it difficult to consider the consistency of the entire image. In
contrast, the proposed method, which uses Transformer-based
modules with a wide receptive field, can generate images by
taking into account the consistency of the entire image. For the
Market-1501 images, the proposed method produces images
competitive with other state-of-the-art methods.

Fig. 3 also shows that the proposed method can address
significant pose changes as well as the existing methods.

D. Ablation Study

ATTB as a feature extractor: Tab. II shows that the perfor-
mance is quantitatively better when the ATTB is used than
when other feature extractors are used. The filter operation of
the CNN and the Window Attention of the Swin Transformer

narrow the receptive field in the vertical and horizontal direc-
tions and thus cannot take into account the consistency of the
entire image. In contrast, ATTB does not narrow the receptive
field in the vertical and horizontal directions, which has good
effects for the networks.

V. CONCLUSION

This paper proposes a simple but powerful network for
Pose Guided Person Image Generation (PGPIG). The proposed
method can address significant transformations without requir-
ing additional data or tasks and overall image consistency
problem. TThis makes the network significantly lighter. Our
network achieves competitive performance while it has only
7.54% number of parameters compared to existing state-of-
the art network. The proposed network is designed based
on the idea that PGPIG can be divided into “rough pose
transformation” and “detailed texture generation”. Each sub-
task is processed by Axial Transformer Transformation Block
(ATTB) with Encoder-Decoder structure and CNN Transfor-
mation Block (CTB).
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