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ABSTRACT

For intelligent surveillance systems, abnormal event detection
(AED) automatically analyses monitoring video sequences
and detects abnormal objects or strange human actions at the
frame level. Due to the shortage of labelled data, most ap-
proaches for AED are based on reconstruction or prediction
models in a semi-surprised manner. However, these methods
may not generalize well to an unseen scene context. To ad-
dress this, we present a pose-oriented scene-adaptive frame-
work for AED. In this framework, we propose synergistic
pose estimation and object detection, which integrates human
poses and object detection information well to improve pose
information accuracy. Subsequently, the enhanced pose se-
quences are taken into a spatial-temporal graph convolutional
network to extract the geometric features. Finally, the fea-
tures are embedded in a clustering layer to classify the type of
actions and calculate the normality scores. For evaluation, the
proposed framework is tested on video sequences with unseen
scene context across from UCSD PED1 & PED2 and Shang-
haiTech Campus datasets. The performance analysis and the
results compared with other state-of-the-art works confirm the
robustness and effectiveness of our proposed framework for
cross-scene AED.

Index Terms— Abnormal event detection, scene-adaptive,
pose estimation, object detection, graph convolutions

1. INTRODUCTION

Abnormal event detection (AED) detects and analyses human-
related activities and classifies the anomalies at the frame
level from video sequences. With the widespread applica-
tion of surveillance cameras, this technology has become
significant in intelligent surveillance systems, health care,
robotics, and human-computer interface [1, 2, 3, 4]. Due
to the limitations of labelled data, most current approaches
for AED are based on reconstruction or prediction models
via a semi-supervised learning manner. The reconstruction
methods, such as [5, 6, 7], model the feature distributions
of normal events by an auto-encoder-based neural network
and use reconstruction errors to discriminate between normal
and abnormal events during inference. The prediction meth-
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Fig. 1. Problem review. Scene-adaptive works for AED are trained in the
source domain and tested in the target domain. Compared with the image-
level works, our pose-oriented AED is more explainable and efficient.

ods, such as [8, 9, 10], learn the probability distribution of
normal events by predicting the future frames and use predic-
tion errors to recognize the differences between normal and
abnormal events.

However, these methods lack the ability for cross-scene
generalization. For instance, there are several video se-
quences from different scenes; if a model is trained on one
scene and can be generalized to the other scene context
without additional training, it will effectively reduce the com-
putational requirement for intelligent surveillance systems.
A cross-scene AED evaluation was discussed in [2], which
was trained on ShanghaiTech Campus[9] dataset and tested
on CUHK Avenue[11] dataset with similar scenes at the
image level. Due to the intervention of background informa-
tion and various definitions of abnormal events on different
datasets, the performance of the proposed cross-scene train-
ing framework for AED is unsatisfactory. This paper presents
a scene-adaptive framework to address the pose-oriented
AED, where human poses are considered a better scene-
agnostic feature for cross-scene learning, as shown in Fig 1.
To this end, we propose synergistic pose estimation and ob-
ject detection, which well integrates human poses and object
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Fig. 2. The overall architecture of the proposed framework. Firstly, video sequences are clipped at the frame level and imported into object detection and
pose estimation blocks. The extracted class and pose data are mapped to enhance the data accuracy. Then, in training, the improved pose data are fed into
ST-GCN networks to extract the latent vectors and further processed by a deep action-based clustering block. In testing, the videos are resized to adapt to the
background size of training samples. The class and pose data are also extracted and mapped. The improved testing pose samples are put into the neural network
to calculate normality scores frame by frame. Finally, the results of clustering and detection blocks are fused to do a binary classification to decide whether the
frames are normal or abnormal. Best viewed in color.

detection information To improve pose information accuracy
by mapping the prior pose and class results. The resulting
pose sequences are fed into spatial and temporal graph convo-
lutional networks (ST-GCN) to learn spatio-temporal feature
representations. Then a fully connected layer is appended
to clustering the human-related activities. Final decisions at
the frame level are made based on the integrated normalities
from the ST-GCN and object detection, as shown in Fig. 2.

The contributions of this work are threefold: 1). A pose-
oriented scene-adaptive framework is proposed for abnormal
event detection on surveillance videos. 2) A synergistic pose
estimation and object detection is developed to improve the
pose information by integrating context class results, which
is demonstrated to be effective for scene-adaptive AED. 3)
The effectiveness of the proposed framework is validated on
two public AED datasets with comparisons with other state-
of-the-art methods.

2. PROPOSED METHOD

2.1. Synergistic Pose Estimation and Object Detection

Given a video sequence V, a ready-made model for object
detection: YOLOv3 [12] is being used in the frame level to
extract the moving objects’ classes, bounding boxes, and con-
fidences, which are represented as T , X1,2, Y1,2 and C, sep-
arately. In the i−th frame, if there are J objects detected, the
image is represented as:

Vi
J = {[(T,X1,2, Y1,2, C)i,j | j = 1, ..., J} (1)

The prior texture class information is efficient in the initial
target improvement and the final AED steps.

Inspired by our pose-level human tracking [13] and hu-
man action recognition[14, 15], we exploit a pose-driven ac-
tion recognition framework for scene-adaptive AED. There
are two essential factors of pose graphs: nodes and edges.
Nodes are the physical location under the coordinate system.
Moreover, edges are the vectors between two nodes. As a type
of no-grid data, pose graphs are estimated to be fed into ST-
GCN[16] to capture the latent vectors of normal actions and to
cluster abnormal actions on testing videos. Meanwhile, pose
information can effectively decrease the influence of back-
ground illumination and different camera viewpoint on dif-
ferent datasets, which create favourable conditions for cross-
scene AED. AlphaPose network [17] is conducted to extract
the related pose graphs on different datasets. Each pose graph
is represented in a 3-D dictionary. The results contain the
pose identifications, the frame numbers, the 17 body land-
marks and the corresponding confidences. The m-th frame’s
output with K pose graphs detected after pose estimation is:

Pm
K = {[m, k,Xn, Yn, Cn] | k = 1, ...,K;n = 1, ..., 17} (2)

Since the proposed framework for scene-adaptive AED is
two-stage, the accuracy of pose information is essential for
the classification performance of the second-stage neural net-
work. There are two major methods to refine the estimated
pose graphs. One method is to improve the accuracy of joint
landmarks, and the other is to remove false pose detection
and identification. Since our work focuses on abnormal hu-
man behaviours, the head landmarks are less important and

522



Fig. 3. 1. A pose estimation sample 2. The corresponding object detection
sample 3. The combining of pose and bounding box information 4. The
enhanced pose graphs after mapping. Best viewed in color.

merged into one landmark. Moreover, combined with the
prior object class information, the pose data improved after
mapping. There are plenty of false alarms in object and pose
detection. As shown in Fig 3, after capturing the pose graphs
and bounding boxes, the pose and bounding boxes with low
confidence are removed. Then, the K pose graphs are merged
with the J bounding boxes. Only the pose graphs that corre-
spond to bounding boxes are retained.

2.2. ST-GCN and Clustering Implementation

After the refinement of pose information, a spatio-temporal
graph convolutional network (ST-GCN) [16] is exploited to
extract the features of normal events. A dictionary of underly-
ing actions is built using a deep-embedded clustering step. In
the spatial domain, the physical localization and connection
of body landmarks under the coordinate system are analyzed.
Meanwhile, the movement of body landmarks during consec-
utive frames is considered in the temporal domain. The kth
pose graph in the i − th frames on video clips is represented
as Γi

k = {N i
k, E

i
k}. N i

k = {µi
j,k ∈ SD|j = 1, ..., 17} is

the nodes of the pose graph, which describe the localization
of all landmarks. S are the set of all joints, while D is the
dimension of the joints. Moreover, Ei

k = {ϵij,k} is the edges,
which means the connection of neighbouring landmarks. To
implement the graph neural network, a fixed matrix A is set
for all layers [18]. The implementation formula:

G(N i) = Λ− 1
2 (A+ I)Λ− 1

2N iW i (3)

where N i is the set of nodes, Λ is the degree matrix, I is
the identity matrix representing self-connections, and W i is
trainable weights.

The next step is to analyze and cluster the spatio-temporal
features from the neural network. The clustering model is

constructed to calculate the probability distribution of normal
data. In the training step, the Kullback–Leibler (KL) diver-
gence is minimized between the clustering probability distri-
bution P and the distribution of the detected objects Q [1].
The loss function of the clustering step is:

L = KL(Q∥P ) =
∑
m

∑
n

qmnlog

(
qmn

pmn

)
(4)

where m,n mean the mth pose assigned to nth cluster.
During inference, anomaly scores are calculated with the

combining results of pose normality scores Np from graph
neural network and the class normality scores from object de-
tection. The formula is:

Nt = δ

∑K
k=1 Np

k
t

K
+ (1− δ)

∑K
k=1 R

k
tC

k
t Wi

U
(5)

where δ is the weight for pose information, R is the area of
bounding boxes, C is the corresponding confidence, Wi is the
weights of objects, and U is the frame size.

3. EXPERIMENTS

3.1. Experimental Setup

We evaluate our proposed method on the following two
benchmark datasets, UCSD PED [19]: this dataset con-
tains two parts: UCSD PED1 & PED2. PED1 consists of 34
training videos and 36 testing videos with a frame resolution
of 238 × 158, and PED2 consists of 16 training videos and
12 testing videos with a frame resolution of 360 × 240. The
datasets are recorded with fixed viewpoints, which means the
scene context of the training and testing sets is consistent.
ShanghaiTech Campus [9] (SHTC): This dataset is one of
the most challenging datasets for AED. There are 330 train-
ing video sequences and 107 testing video sequences with
complex illuminations and 13 different scenes of a frame
resolution of 856 × 480.

We utilize ST-GCN[16] as our backbone architecture and
a deep embedded clustering [20] for the action classification.
The clustering parameter K is set to default as 10. The Py-
Torch framework implements the experiments on a GeForce
GTX 1080Ti GPU.

3.2. Performance Analysis

Firstly, the results of scene-adaptive AED are presented.
The proposed framework is trained in single-scene video se-
quences of the SHTC dataset and tested on the rest of the
video sequences from the same dataset. Table. 1 details the
AUC performance on different scenes and compares it with
two related works for AED on the SHTC dataset. Compared
with two related works for cross-scene AED, our framework
performs better on almost all the testing sequences.

Fig. 4 visualizes some example results on the SHTC
dataset for the same-scene, single-scene, and cross-scene
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Table 1. AUC performance on the SHTC Dataset when training in one-camera scene video sequence and testing in the rest.
Method Cam-1 Cam-2 Cam-3 Cam-4 Cam-5 Cam-6 Cam-7 Cam-8 Cam-9 Cam-10 Cam-11 Cam-12

Liu et al.[9] 0.678 0.618 0.663 0.659 0.698 0.735 0.681 0.619 0.674 0.679 0.655 0.651
Doshi et al.[2] 0.753 0.707 0.761 0.681 0.784 0.814 0.789 0.626 0.706 0.663 0.753 0.719

Proposed 0.792 0.826 0.839 0.830 0.824 0.792 0.782 0.763 0.787 0.749 0.779 0.738

Fig. 4. Normality scores for different scene training. Same-scene:
SHTC−→SHTC. One-scene: one scene on SHTC −→ the rest on SHTC.
Cross-scene: PED2 −→ SHTC.

approaches. The figures present the normality scores of ab-
normal actions: cycling and driving. In general, all abnormal
frames are separated with normal samples approximately.
One-scene and cross-scene training performance are slightly
worse than same-scene training.

Table. 2 details the performance of our models for cross-
scene AED on the UCSD and SHTC datasets. The AUC
performance decreased on cross-scene evaluation compared
with same-scene evaluation. In our proposed framework, the
performance of training on the SHTC dataset and testing on
the PED2 dataset slightly drops. On the contrary, the AUC
performance drops dramatically. Table. 2 also demonstrates
the advantages of the pose-based model for scene-adaptive
AED, as pose-level action classification models are robust for
cross-scene evaluation with the combination of object detec-
tion. Compared with other image-based AED work results,
the proposed framework is more suitable for scene-adaptive
AED tasks.

Table 2. AUC performance on different datasets for scene adaptability
Train−→ Test Recon-based[21] Frame-Pred[9] Proposed

PED2−→ PED2 0.865 0.954 0.944
SHTC−→ PED2 0.798 0.895 0.938
SHTC−→ SHTC 0.650 0.728 0.839
PED2−→ SHTC 0.575 0.717 0.785

Table 3. AUC Performance for AED compared with some state-of-the-art
methods.

SHTC PED2 PED1
ConvLSTM-AE [5] - 0.881 0.755

Conv-AE [6] 0.609 0.811 0.750
Yang et al. [22] - 0.940 -

Luo et al.[8] 0.680 0.922 -
Liu et al. [9] 0.728 0.954 0.831

Zhao et al. [10] - 0.912 0.923
Markovitz1 et al. [1] 0.761 - -

Morais et al. [23] 0.734 - -
Proposed (same-scene) 0.839 0.944 0.748
Proposed (cross-scene) - 0.938 0.745

3.3. Comparison with State-of-the-art

Table. 3 compares the AUC performance between the pro-
posed scene-adaptive framework and other state-of-the-art
methods. The proposed approach achieves the highest AUC
score of 0.839 on the SHTC dataset and a competitive AUC
score of 0.944 on the UCSD PED2 dataset. Existing solu-
tions for abnormal event problems are mainly reconstruction
models such as ConvAE [6] and ConvLSTM-AE [5] and
prediction models such as future frame prediction[9]. Com-
pared with the results of these approaches, our proposed
framework has a comparable performance for cross-scene
evaluation across from SHTC and UCSD PED2 datasets,
which suggests that our pose-oriented framework is suitable
for cross-scene AED and that the synergistic pose estimation
and object detection strategy effectively integrates the pose
and class information for feature extraction. However, for the
UCSD PED1 dataset, the AUC performance of our proposed
model is underperforming, which is the limitation of the low-
resolution dataset for the detection model. Future work will
address this matter by including motion features.

4. CONCLUSIONS

We presented a pose-oriented scene-adaptive framework for
AED in surveillance videos. With the synergistic pose esti-
mation and object detection, pose data is extracted and en-
hanced to feed into ST-GCN for action classification and a
downstream AED task. The solution of the novel cross-scene
training for AED has huge potential in real-world applica-
tions. The results of pose-level cross-scene training for AED
are feasible on different datasets with the same tasks, similar
activities and different backgrounds. Compared with image-
level cross-scene training for AED, the scene-agnostic pose
information is more effective for the cross-scene AED task.
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Through the results of cross-scene training decrease, the AUC
performances of training on complicated datasets and testing
on simple datasets are acceptable.
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