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Abstract—Scene Graph Generation (SGG), given an image,
is the task of building directed graphs where edges represent
predicted <subject - predicate - object> triplets. Most
SGG models struggle to identify important and descriptive
relations in images flooding the graph with triplets like <window
- on - building>. This is not due to training problems but
rather the lack of saliency in fully supervised SGG datasets.
Hence, observing that annotators describing an image naturally
omit background relations and encode image saliency we (i) intro-
duce a generalized method for training SGG models with weak
supervision using image captions, (ii) introduce two variations
of the Recall@N metric which can quantify the saliency of SGG
models and (iii) perform quantitative and qualitative comparisons
with related literature in VG200, where we achieve up to 35%
improvement compared to re-implementation of the SOTA.

Index Terms—scene graph generation (SGG), saliency, weak
supervision, language supervision, image captions

I. INTRODUCTION

Scene Graph Generation (SGG) has been tackled for years
using fully supervised methods on VRD [1] and Visual
Genome [2]. Unfortunately, the graphs produced from these
models can not capture the required information to generate
accurate interesting representations. Instead, models predict
relations like <sign - on - board> (Fig. 1 - bottom) and
<window - on - building> (Fig. 1 - top) that do not encode
important information. As a result, these graphs can not be
used to improve higher-level tasks like image captioning [3]
where identifying important object relations is of the essence.
We will refer to the ability of the models to identify important
relations for the description of the image as saliency.

The problem begins with fully annotated SGG datasets.
VG200 [4], the benchmark for SGG, is not exhaustively
annotated as not all possible triplets or image entities are
annotated. We also see that (i) relations not annotated are not
always background or negatives (i.e. not true) (Fig. 1 - top) and
(ii) many important entities are not annotated (Fig. 1 - bottom).
As a result, models learn to label as background, relations that
happened not to be annotated because of annotation bias.

Fortunately, there is an abundance of images with cor-
responding, easy-to-produce, captions incorporating saliency.
Annotators describing an image naturally omit background
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Fig. 1. (top) Even state-of-the-art methods [5] prefer relations like <window
- on - building instead of <man - riding - horse>. Dotted arrows
represent non-annotated but predicted pairs. Thin black lines show labeled
annotations. (bottom) The racket, a main object, is not even annotated in this
VG200 sample. Actually, the only annotated pair is <sign - on - board>.

relations (e.g. would not reference a window on a building
when describing a scene of a man riding a horse). However,
these datasets do not have grounding information, meaning
that an entity in the text is not linked with an image region.

We are the first to use weakly supervised training of SGG
models on image captions to distill entity pairs’ saliency.
Additionally, we use weaker supervision than the previous
state-of-the-art (SOTA) [6], despite improving test metrics by
up to 35%. Lastly, our method is model-agnostic and can be
used with other training loss modules like those in [7], [8].

Thus, we introduce new metrics to quantify SGG models’
saliency, we implement a SOTA method for weak language
supervision using image captions, we qualitatively and quan-
titatively examine the saliency of fully and weakly supervised
models, and we compare with previous SOTA.
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Fig. 2. Method Overview. We use an OTS Scene Graph Parser to extract weak supervision triplets from captions (Sec. III-A) and we detect the image entities
using an OTS object detector (Sec. III-B). Lastly, we match the prediction with the supervision triplets, during training, using the Hungarian Algorithm to
minimize a Weak Graph Matching Loss (WGML) (Sec III-C).

II. RELATED WORK

Although relatively new, the idea of using image captions
to train SGG models has been tested with mixed results
[6], [9], [10] and no reference or indication of saliency.
An off-the-shelf (OTS) scene graph parser is used to create
semantic graphs from image captions and an OTS object
detector to detect image entities. In [9], an iterative method like
Expectation-Maximazation is used to approximate a Second
Order Matching for semantic and detected objects. Predictions
are made using visual and contextual language features from
the semantic graphs, refined by a language LSTM. In [10] pre-
trained Visual-Language transformers are used for grounding,
creating a fully supervised dataset before training.

On the other hand, [6] randomly match semantic and visual
objects of the same category to create a fully supervised
dataset with soft labels. Then, a Vision-Language Transformer
is trained in a fully supervised manner outperforming previous
language-supervised SGG methods. A “weighted loss” term is
also used which incorporates biases of the evaluation dataset
into training. This improves results by more than 50% but we
will ignore it as it leaks data from testing to training. Lastly,
this is not a weakly supervised training method, as it offline
creates a fully supervised dataset with soft labels.

In contrast, we post-process the parsed semantic graphs and
detected objects and use a simple First Order Matching for
semantic and detected objects during training.

III. METHODS

Fully supervised datasets consist of <subject -
predicate - object> triplets with bounding boxes
grounding entities to images. In the weakly supervised unlocal-
ized graph setting, we can use these datasets, ignoring image
groundings, resulting in a set of triplets and image entities.

A weaker mode is to use only image captions as supervision.
For this, we extract triplets from captions using OTS parsers

(Sec. III-A) and detect objects using pre-trained object detec-
tors (Sec. III-B). Thus, the problem reduces to the unlocalized
graph setting with soft labels (i.e. we have machine-labeled
triplets and image entity regions, without grounding between
them). For training, we propose a Weak Graph Matching Loss
(Sec. III-C) matching soft-labeled and predicted triplets.

A. Triplet extraction from image captions

To parse triplets from image captions, we use the OTS
scene graph parser (SGP) provided by [11], where a syntactic
dependency tree is built by [12] and then a rule-based method
[13] is applied for transforming the tree to a scene graph.

We follow with post-processing to map the vocabulary
generated by the SGP to that of VG200. For each lemmatized
entity and predicate not in the VG200 vocabulary, we check
if (i) one of their synonyms or hypernyms is in VG200, using
WordNet [14], (ii) changing, singular to plural, adding or
removing ing or changing tenses (e.g. from past to present),
generates a word from VG200 and (iii) permuting between on,
onto, upon and between in, into, inside, creates a word
in VG200. If any check applies, we make the replacement.

B. Generate soft labels for image entities

To generate image entity labels, we could use a detector
trained on the testing dataset. However, this would leak
evaluation data into our training process. We use a pre-trained
detector on the Open Images [15] dataset that detects 601
object categories, 77 common with VG200. We post-process
the results similarly with section III-A, replacing entity class
names and keeping only classes referenced on the triplets.
Eventually, we can detect 109 of the 150 objects of VG200.

C. Weak Graph Matching Loss (WGML)

Next, we need to find a way to supervise each prediction
of our model. For every predicted entity pair’s relation we
must know whether it should be foreground or not, and if so,
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which of the available soft labels should it be assigned. Let
us consider figure 2 where we predicted <person2 - holds
- glass2> and <person3 - holds - glass2>, but the
soft labels inform us that <person - holds - glass>, not
which person or glass. Our goal is to find which of the possible
predicates between person1−4 and glass1−4 should be
assigned the label holds and calculate the cross-entropy loss.

Our main contribution is implementing a simple First-Order
Graph Matching using the Hungarian Algorithm [16] that
calculates the label assignment minimizing the batch loss. Let
Gi be the predicted image graph, Gs the semantic graph, M a
graph matching connecting soft labels with inferred predicates,
and L a loss function; we select the optimal matching as
M∗ = argminM [L (Gi, Gs,M)]. Finally, if ϕ is the model
parameters, the nested optimization that sums up the training
procedure is ϕ∗ = argminϕ E [minM L (Gi, Gs,M)].

The optimal matching is calculated by the Kuhn–Munkres
(Hungarian) algorithm which, given the matching cost of each
label-predicate pair, computes the minimum cost matching.

1) Triplet matching loss: Let i be a predicted triplet, j be a
weakly labeled triplet, ok, sk, pk be the entities and predicate
category from triplet k, and Fpi

be the distribution of the
predicted predicates for triplet i, then the triplet loss is:

Li,j =

{
CE (Fpi

, pj) ∀i, j s.t. oi = oj ∩ si = sj

∞ otherwise
(1)

Hence, the Hungarian Algorithm, given the cost of Li,j∀i ∈
np,∀j ∈ nl, where np, nl is the number of predicted and
labeled triplets accordingly, finds the optimal matching M∗ :
{0, 1, . . . np} −→ {0, 1, . . . nl} that minimizes the total cost:

L =

np∑
i=0

CE
(
Fpi

, pM∗(i)

)
(2)

2) Independent predicate and saliency predictions: Adapt-
ing from [17], [18] we split the prediction of a relation S,
P , O into two independent tasks (i) predict an S, O pair
saliency score, Pr(sl|S,O), and (ii) predict a predicate score,
Pr(P |S,O), as pairs can interact non-saliently. Hence, the
probability entities S, O, are related with predicate P is:

Pr(P, sl|S,O) = Pr(P |S,O)Pr(sl|S,O) (3)

IV. RESULTS
1) Introducing saliency metrics: To quantify the saliency of

SGG models we introduce two new metrics; weak Recall@N
for background predicate saliency (wR@N-bpsl) and for back-
ground saliency (wR@N-bsl). These evaluate the model’s
ability to choose salient triplets (bpsl) or entity pairs (bsl)
by counting those in the top N predictions, that semantically
match the weak annotations. Note these metrics are necessary,
but not sufficient conditions for salient models (e.g. prediction
of a wrong person holding the wrong glass for the annotation
<person - holds - glass> would be evaluated as correct).

2) Training settings: We use COCO [19] captions and study
our (Sec. III-A) and [6] parsing pipelines, and three different
matching algorithms (Tab. I). The heuristic matches offline
parsed triplets with entity pairs of high objectness scores.

TABLE I
ALL THE SETTING VARIATIONS FOR TRAINING THAT WE STUDY.

Setting Variations Caption Preprocessing Triplet Matching Supervision

COCOSG weak ours
HA (ours) weak

SGGfromNLS weak [6]

COCOSG full best ours
Heuristic (ours) full w/ soft labels

SGGfromNLS full best [6]

COCOSG full random ours
random [6] full w/ soft labels

SGGfromNLS full random [6]

TABLE II
SIMPLE BASELINE USING ONLY LANGUAGE PRIORS.

Prior Probabilities Object Detector Dataset
PredCls SGGen

R@20 R@50 R@100 R@20 R@50 R@100

VG200
VG200

41.940 56.861 63.586
8.664 12.202 14.912

Open Images 5.107 7.460 9.284

COCOSG
VG200

13.313 19.229 22.648
3.249 4.791 6.055

Open Images 2.010 3.027 4.043

SGGFromNLS [6]
VG200

10.755 15.683 18.490
2.855 4.149 5, 241

Open Images 1.898 2.776 3.538

3) Training: Epoch time for VG200 on a 2080Ti GPU
increases by 35% using WGML, while inference stays un-
changed. We report results of best-out-of-two training times.

4) Priors baseline: We report the performance of a sim-
plistic language model that, for each entity pair, predicts the
most frequent predicate as computed from the training dataset
(Tab. II). Note that our method for triplet extraction appears
superior to [6] and the high sensitivity to different object
detector evaluation or training datasets, makes the comparison
between models and implementations challenging (Tab. II).

5) Unlocalized graph setting: Following [20], [21] we train
on the unlocalized ground truth graph setting. We use VG200
and discard the grounding information. Using WGML and a
simple model utilizing only linguistic and spatial information
(LangSpat), we compare the weakly and fully supervised
methods’ and observe a performance decrease of just 1-2.5%
(Tab. III), indicating our method’s effectiveness.

6) Weak language supervision comparisons: We perform
ablation using the UVTransE model [22] for different graph
parsing and matching methods (Tab. I), and object detectors.

a) Graph parsing from captions: Our graph parsing
method, COCOSG, leads to better evaluation results in VG200
compared to the previous SOTA, SGGFromNLS [6] (Tab. IV
- top). This is attributed to different post-processing. For the
saliency metrics (Tab. IV - bottom) the bpsl metric improves
using our parsing, for all the graph matching methods. Still,
the bsl metric, which only evaluates the saliency between pairs,
does not similarly improve. This is because, independent of
the triplet’s post-processing steps, the information about the
salient entities’ categories already exists in the dataset.

b) Graph matching algorithms: Our dataset, COCOSG,
using the WGML yields the best results on the VG200 (Tab. IV
- top). However, for the dataset in [6] the heuristic matching
performs better. This is attributed to increased noise on the
labels of this dataset and the increased randomness during
training. For the saliency metrics (Tab. IV - bottom) the bpsl
metric prefers the models trained with the WGML. For the bsl
metric, though, the heuristic seems to outperform our method.
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TABLE III
RECALL@N COMPARISON IN VG200 FOR THE FULLY SUPERVISED AND

WEAKLY SUPERVISED SETTING THAT DISCARDS THE GROUNDING
INFORMATION FOR THE SEMANTIC ENTITIES IN THE TRIPLETS.

Method Supervision
PredCls

R@20 R@50 R@100

LangSpat Full 50.493 63.046 66.915

LangSpat + WGML Weak 47.981 61.558 65.586

WSGM+IMP [4], [21] Weak 48.22 61.37 65.83

VSPNet [20] Weak - 44.59 44.77

TABLE IV
COMPARISON OF DIFFERENT TRAINING SETTINGS (SEC. IV-2) BY

COMBINING GRAPH PARSING AND MATCHING METHODS. (TOP)
RECALL@N IN VG200. (BOTTOM) WEAK SALIENCY METRICS.

Dataset Variation
PredCls SGGen

R@20 R@50 R@100 R@20 R@50 R@100

COCOSG weak (proposed) 16.715 23.757 28.900 2.501 3.698 4.647

SGGfromNLS [6] weak 10.008 15.008 19.066 2.003 2.790 3.446

COCOSG full best (ours) 13.705 20.378 25.174 2.210 3.315 4.220

SGGfromNLS [6] full best 11.274 17.253 21.820 2.094 2.904 3.669

COCOSG full random 10.135 15.846 20.085 1.656 2.635 3.438

SGGfromNLS full random [6] 8.970 14.625 19.320 1.860 2.675 3.359

Dataset Variation
SGGen

wR@5-bsl wR@10-bsl wR@20-bsl wR@5-bpsl wR@10-bpsl wR@20-bpsl

COCOSG weak (proposed) 28.031 38.735 48.292 15.425 21.522 28.215

SGGfromNLS [6] weak 27.550 35.686 44.167 13.546 18.428 23.699

COCOSG full best (ours) 29.154 39.033 49.370 15.081 20.032 25.762

SGGfromNLS [6] full best 30.117 38.872 48.247 12.973 16.709 20.720

COCOSG full random 27.229 35.870 45.817 13.202 17.236 21.614

SGGfromNLS full random [6] 27.412 35.205 43.502 12.331 15.723 19.390

Fig. 3. Saliency (bottom) and VG200 (top) test results for the PredCls
and SGGen setting from the re-implemented models. Training on the fully
supervised VG200 and the weakly supervised COCOSG using the WGML.
Weak language supervision greatly improves saliency.

This is because, if the wrong visual and semantic entities are
matched, the correct entities’ categories are matched, tricking
the bsl metric. Also, offline matching leads to less noise during
training. Note the matching method from [6] struggles so
much during training (last two rows of Tab. IV - top), that
is outperformed by the language priors baseline (Tab. II).

c) Object detector: The choice of object detector and
its training dataset can greatly impact models’ performance
(Tab. V). While an object detector trained on VG200 improves
performance in VG200-related metrics, a detector trained on
the more general “Open Images” improves the saliency metrics
(Tab. V) and is not constrained to the VG200 dataset.

d) Applying WGML in multiple models: To examine its
effectiveness and have comparable results, we apply WGML

TABLE V
RECALL@N COMPARISON IN VG200 (TOP) AND WEAK SALIENCY

METRICS (BOTTOM) WITH DIFFERENT TRAINING DATASETS FOR OBJECT
DETECTORS USED IN THE SGGEN SETTING EVALUATION. WE USE

DETECTIONS GENERATED FROM A PRE-TRAINED MODEL ON “OPEN
IMAGES” OR FROM ONE TRAINED ON VG200

Object Detector Finetuning Dataset PredCls SGGen

for Training for Inference (SGGen) R@20 R@50 R@100 R@20 R@50 R@100

Open Images Open Images
16.715 23.757 28.900

2.501 3.698 4, 647

Open Images VG200 3.330 5.070 6.621

Object Detector Finetuning Dataset SGGen

for Training for Inference wR@5-bsl wR@10-bsl wR@20-bsl wR@5-bpsl wR@10-bpsl wR@20-bpsl

Open Images Open Images 28.031 38.735 48.292 15.425 21.522 28.215

Open Images VG200 19.574 27.252 34.999 11.59 16.800 22.026

Fig. 4. Qualitative results for the effectiveness of our method (b) compared
to [6] (c) and fully supervised training (a). Dotted arrows represent non-
annotated object pairs. Thin black lines with italics show labeled annotations.
Our method finds the main image relation <man-sitting on-horse> and
selects a more descriptive predicate than “on” which is annotated, in contrast
with the other methods that did not choose this interaction as important.

on re-implementations of VTransE [23], ATR-Net [17] and
UVTransE [22]. Expectedly, the performance on VG200 re-
duces since the models are trained in a different dataset.
Still, the models show a clear saliency improvement (Fig. 3),
confirming that fully annotated datasets do not encoding it.

7) Qualitative results: We argue that our method improves
scene graphs quality (Fig. 4, 5). The top eight predictions of
each method are chosen to show the salient predictions. For
every method, we use the UVTransE model.

a) More salient results using WGML: Our method (b)
tends to detect the main relationship of the scene more
easily and sometimes even selects more salient predicates
than those annotated in VG200 (Fig. 4, 5). Many times,
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Fig. 5. Qualitative results for the effectiveness of our method (b) compared
to [6] (c) and fully supervised training (a). Dotted arrows represent non-
annotated object pairs. Thin black lines with italics show labeled annotations.
Our method selects the most descriptive predicate riding to describe the
relation between man and skateboard instead of the annotated on. In
contrast, [6] does not detect that skateboard is important for the scene.

using the “random” method from [6] (c) the model can not
detect the salient triplets in the image, and sometimes it has
very little understanding of what is happening in the scene
(Fig. 4, 5). The fully supervised training (a), many times
struggles to detect the salient interactions in the image (Fig.
4), and even when it correctly detects salient pairs, it usually
assigns generic non-salient predicates (Fig. 5). Unfortunately,
our method’s improved saliency, shown by predicting more
interesting than annotated predicates (Fig. 4, 5), is punished
by the Recall@N metric at VG200, highlighting, even more,
the need for introducing the new metrics in Sec. IV-1.

b) Model failures: Sometimes our method predicts
wrong triplets like <cap-of-building> (Fig. 4). The rea-
son is the high frequency the predicate of is detected, by
each-self, Pr(P ), and in specific entity context, Pr(P |O),
Pr(P |S), Pr(P |S,O) where P , S, O are the predicate,
subject, and object. For our example, the model during training
has seen many times the <window/door-of-building>
and <cap-of-woman/man/person>, hence the predicate
“of” ends up having very high probability. Thus, although the
probability cap and building are related is low (seen from
the low saliency score the model assigns to this pair), the
triplet ends up in the top eight. More diverse vocabulary for
entities and predicates, and variety in the caption datasets used
will lead to a reduction of this problem. But, to evaluate on
VG200, the choice of vocabulary was restricted for this work.

V. CONCLUSION

In this work, we focus on the lack of saliency in Scene
Graph Generation (SGG) models, proposing metrics to quan-
tify it and methods to produce more salient models. Fully
annotated datasets are not salient, have unimportant relations
annotated, and don’t always refer to the main entities. Thus,
observing that image captions encode which relations are more

important in images, we parse semantic graphs from captions
to weakly train SGG models. We introduce a First Order
Matching for semantic and predicted graphs using Cross-
Entropy and two variations of Recall@N that use weak su-
pervision signals. Overall, our method generates more salient
graphs, with descriptive predicates and salient entity pairs.

Future work will focus on removing the object detector and
semantic graph parser, generating graphs end-to-end through
attention distillation from captions with less supervision.
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