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Abstract—Autonomy in manufacturing is a major challenge
of Industry 4.0. To allow autonomous assembly of rotary tables,
one important aspect is the localization and discrimination of
empty holes and screws. In this paper, we propose a novel feature
descriptor to discriminate screws and holes. The descriptor is
embedded in an end-to-end pipeline, which localizes candidates
on concentric workpieces. The candidates are analyzed using
a slim tree-based classifier, which discriminates inserted screws
and empty holes. These are later used in autonomous screwing
processes. The proposed methods are supplemented by an intu-
itive UI-driven process, which enables non-expert users to train
and deploy the them leniently in autonomous manufacturing
processes. The feasibility of the proposed method is demonstrated
in multiple lab experiments and in a real-world demonstrator as
part of the SHAREWORK project.

Index Terms—Screw Detection, Autonomous Manufacturing,
Explainable AI, Random Forest

I. INTRODUCTION

Aim of the SHAREWORK project is to bring human-robot
collaboration (HRC) to less automated industries and to make
the framework’s methods easily accessible to non-expert users.
In collaborative processes, the robot is required to identify
certain objects within its environment. One important task is to
discern whether screws are inserted into a rotary table. Based
on the detection, the manufacturing process of the rotary table
is supervised, and the robot enabled to react dynamically to
human actions while assisting the assembly process.

In this paper, we propose a simple discrimination pipeline1

for screw and hole identification to make AI accessible to
the non-expert user. First, candidates are identified based on
geometric segmentation. These are, then, analyzed in a binary
classifier, which discriminates inserted screws from holes. The
method is validated in lab tests and in the real application.
Latter shows the feasibility of the technology to be integrated
by non-experts. The main contributions of this paper are:

• Classifier to discriminate overlying or countersunk screws
and empty holes using a novel feature descriptor.

• End-to-end pipeline to be used on concentric workpieces.
• Guided training and deployment approach to ease use of

the proposed pipeline for non-expert users.

We like to thank the European Union for funding this work within the
SHAREWORK project (grant 820807).

1Code available at https://github.com/nilsmandischer/sharework screw
detection (add “ ros” for ROS interface).

II. RELATED WORK

The reliable and resource efficient detection of objects is
one of the fundamental tasks in autonomous manufacturing
and HRC. Ramana, Choi, and Cha [1] and Wegener et al. [2]
both use Cascade classifiers trained using AdaBoost to detect
screws in an image. Ramana et al. additionally use a Support
Vector Machine (SVM) to classify the located screws into
different groups. Bdiwi, Rashid, and Putz [3] propose a method
to detect screws in an RGBD scan. Their approach first uses
a Harris Corner Detector to find screw candidates with a
high False Positives (FP) rate and filtering them, subsequently.
Filtering consists of an analysis of the region of interest’s
(ROI) hue, saturation, and brightness values, and the usage
of the camera’s depth measurements. Cruz-Ramirez et al. [4]
suggest the usage of multi template matching to detect screws
in an HRC environment to dismantle metal-ceiling structures
in buildings. This approach is applicable, if a single type of
screw is used, but does not translate well to scenarios with
different types of screws, since a new template is needed
for each type. Li, Wei, and Xing [5] propose a similar
method, which uses local binary patterns and a sliding window
approach to localize screws and generate features which are,
then, classified using a SVM. Similarly, Tellaeche, Maurtua,
and Ibarguren [6] propose a 2D matching method using 3D
CAD models to match onto an image.

Tree classifiers, like Random Forest Classifiers (RFCs),
may also be used for object classification [7], but do not
see widespread use for detecting screws in images. Another
approach for locating and classifying objects is the usage of
neural networks [8]. Depending on the specific implementa-
tion, before classifying screws they first have to be located.
Yildiz and Wörgötter [9] and Cha, You, and Choi [10] use
the Hough Circle Transform (HCT) to find the location of
possible screw candidates and classify them using a neural
network. Martinez, Ahmad, and Al-Hussein [11] propose an
ellipse fitting algorithm - instead of HCT - to locate circular
objects, like screws, to compensate for different observation
angles.

Since it is the scope of SHAREWORK to enable un-
trained personnel to use all methodology provided by the
project’s framework, it is unreasonable to apply deep learning
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techniques, as they are not able to adopt the methodology,
accordingly. The same applies to any technique which requires
specifically trained personnel to retrain a model or generate
templates for matching. Instead, we propose a heuristic feature
descriptor in combination with a RFC and an intuitive user
interface (UI) for retraining the classifier. The benefit is that
the user can provide new training data to adapt to new models
of the rotary table or screws, and train the classifier by
themselves without knowledge of the underlying methodology.

III. METHODOLOGY

The methodology is split into three stages: (A) locate and
segment screw/hole candidates, (B) extract features, (C) clas-
sify candidates into screws and holes (see Figure 1). First,
candidates are found on the target area. They are analyzed for
certain features, which typically characterize inserted screws
and holes. Finally, the features are fed in a classifier that
decides to which class the candidates belong.

A. Candidates

To locate candidates for classification, we exploit geometric
features of the rotary table. The holes are distributed concentric
on a slim circle segment of the rotary disk (see Figure 2.I).
First, the rotary disk (red circle) is detected using a HCT.
Since the diameter of the workpiece is known, the ROI (red
area) in which the candidates are located is well defined and
is determined accordingly. To identify the candidates, HCT
is used on the previously determined ROI. This allows for
reliable detection of only the desired candidates, hence makes
classification easier, as there is a highly controlled input of
only two distinct cases, holes with and without screws. The
proposed approach to locate candidates can be directly used
for any circular workpiece with concentrically aligned screws
or adapted for arbitrarily shaped workpieces with predefined
screw locations. Note, that the features descriptor and classifier
do not require the workpiece to be concentric. However, the
approach to determine the center axis in Section III-B may
need to be adapted for non-concentric workpieces.

B. Feature Descriptor

The selected features follow a minimalist approach to
save computational time for training the model and during
subsequent execution, and to allow better explainability for
the user. Hence, the number of features is kept as small and
understandable as possible, while producing reliable results.
All features are calculated using a gray-scale representation
of the image. The ROI of a candidate is the area inside the
detected circle of the HCT, which is represented by a red
circle in Figure 2.II. The usage of gray-scale images results in
the actual screw color being negligible and the difference in
gray-scale between the screw and the workpiece being more
important. In the industrial use-case, silver and black screws
on a metallic surface are used, which are either overlying or
countersunk. Black screws can be understood as screws with
a strongly different color than the workpiece and silver screws

Fig. 1: Sketch of the end-to-end pipeline.

Fig. 2: I: Detected rotary table (red circle) and corresponding
ROI (red area in blue lines). Two candidates (green) and the
line used in features (d) and (e) for one of the candidates (red
line). II: Detected candidate (red circle) and the line used in
features (d) and (e) (red line); depicted is a hole. III: Detected
candidate and the areas for feature (a) (green) and (c) (red);
depicted is a screw.

as of similar color. Note, by this the descriptor may be used
for all type of colored screws. We describe five features:

(a) Bright Center The feature aims to identify a screw by
its characteristic bright center spot given that the work bench
is properly illuminated - which is the usual case. The feature
describes the average intensity of a small circular area at the
center of the detected candidate (see Figure 2.III). The area
used to calculate the feature has a diameter of 25% of the
candidate’s diameter.

(b) Black Screw This feature takes the average intensity of
the whole area inside the candidates ROI to account for the
usage of black screws, which are darker than the metal of the
surrounding parts (see Figure 2.II). This feature does not limit
the method to the usage of black screws, but is a key feature
in case of screws with a different color than the workpiece.

(c) Bright Metal Holes without a screw inserted show
a brighter area in which usually the screw head resides.
Therefore, the feature computes the intensity of the outer ring
of the candidate (see Figure 2.III). The inner diameter of the
ring is 50% and the outer diameter is 100% of the diameter
of the detected circle.

(d) Intensity Plateaus For this feature, we determine a
line across the candidate which crosses the rotary disk’s and
the candidate’s center point (see Figure 2.I and 2.II). This
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corresponds to the exit of the incident light. Note, that the
workpiece is illuminated concentrically. Along this line, inside
the ROI of the candidate, the number of intensity plateaus
is counted. An intensity plateau is defined as a sequence of
pixels, which are of roughly equal intensity, without being
separated by more than four pixels of different intensity. This
is to consider the different intensity distributions along the axis
of the hole, and is particularly important in case of countersunk
screws.

(e) Intensity Length This feature uses the same line as in
(d), but computes the number of pixels, which are of greater
intensity than the average of the whole ROI of the candidate.

C. Classifier

Typically, a RFC is not the best suited classifier for real-
time applications since predictions take longer compared to
other classical learning-based classifiers. This is due to the
large amount of individual decision trees generated for a
Random Forest. This property, however, can be neglected due
to the small feature count. The classifier is implemented with
OpenCV. For training, the maximum tree depth is set to 25
and the minimum required samples for a node to be split
is set to three. The regression accuracy is set to 0.01 and
the Random Forest is allowed to build surrogate splits. The
maximum categories are set to two and the subset of features
for each tree is set to three. The learning process is terminated
after 200 iterations. The a priori class probabilities are set to
be equal for all classes.

IV. TRAINING AND DEPLOYMENT

As the proposed method uses only a small number of
training samples, those are generated by the end-user directly.
For this purpose, we provide a simple UI that segments an
image and presents the user with the candidates (see Figure 3).
The user then decides if a hole, screw, or false detection is
depicted by pressing the according button. After all images
have been processed the classifier is automatically trained and
the application is ready to be used. With this approach, the
classifier can be trained in under five minutes including taking
images. This measure is taken from the industrial use-case
presented later in Section V-B. In the scenario, the hardware
integrator was able to apply the UI without further instructions,
which underlines the simplicity and intuitivity of the approach.
To parameterize the full pipeline, only the diameter of the
screws and the rotary table have to be set. Based on the
observations, the UI is termed feasible. In future additions,
the text-based UI should be embedded in a graphical user
interface (GUI) to improve on usability.

V. VALIDATION

To validate the method, two different setups are used: First,
the method is validated in a lab scenario as seen in Figure 4
to determine key performance indicators (KPIs). Secondly, the
method is integrated in an industrial use-case in cooperation
with the Goizper Group as seen in Figure 2.

Fig. 3: Simple UI used for training the classifier in the
industrial use-case.

Fig. 4: Exemplary detections on mock (lab scenario): Detected
screws (blue circle) and holes (orange square) are highlighted
(re-colored for convenience) including malformed output.

A. Lab Scenario

In lab validation, a Stereolabs ZED 2 camera
(2208x1242px) is placed at a distance of 0.475m to a
mock of the rotary table to detect up to ten overlying M6
screws (see Figure 4). Four sets of images are generated
which cover 1000 object samples each and include silver or
black screws with varying lighting conditions. Out of the
1000 object samples, 50% are screws and the other 50%
are empty holes respectively. To train the classifier, we use
samples of a rotary disk with all or no screws inserted in three
different orientations, which results in 60 training samples
total. The samples are taken with black and silver screws
separately. When classifying objects, four distinct outcomes
can be achieved (see Figure 4):

TP Candidate found, and classified correctly
FN Candidate found, and classified wrongly
FP Candidate found, but located wrongly
Miss Candidate not found at all
The agglomerated occurrences of True Positives (TP), False

Negatives (FN), False Positives (FP), and Misses are listed in
Table I for all test-cases of the lab scenario. It is noticeable
that screws are less often missclassified or not found at all
when compared to holes. Furthermore, almost all falsely seg-
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mented candidates are classified as holes, which is expected,
as the proposed method does not distinguish objects from
background in case of erroneous segmentation.

For validation, we define KPIs for the full pipeline, includ-
ing segmentation errors (Misses and FP). The indicators are
accuracy ac, precision pr, and recall re, defined by

ac =
TP

TP + FN + FP +Miss
, (1a)

re =
TP

TP + FN +Miss
, (1b)

pr =
TP

TP + FP
. (1c)

In addition, as the segmentation may be exchanged in appli-
cations with non-concentric workpieces, we also measure the
performance without influence of the HCT in form of adjusted
accuracy recall r̃e, defined by

r̃e =
TP

TP + FN
. (2)

To analyze the adaptability of the proposed method, we
define five different scenarios in which KPIs are measured:

A Well illuminated workplace with black screws
B Well illuminated workspace with silver screws
C Sparsely illuminated workspace with silver screws
D Subset of set A, trained on sets A and B
E Subset of set B, trained on sets A and B

The subsets and training sets in D and E contain an equal
amount of black and silver screws, and for training 60 screw
and 30 hole samples are used. Sets A, B, and C use training
samples generated with according illumination (well-lit or
sparse) and screws (black or silver). The results in each
scenario and corresponding KPIs are listed in Table II. In
general, all test cases show good performance in detecting
screws on the rotary disk. While we define features which
benefit illuminated reflective surfaces, they contribute to the
overall class decision and do not lead to over-fitting on
the lighting conditions, which is particularly emphasized by
case C. In case of silver screws, using a sparsely illuminated
workspace benefits the classification. This is due to the fact
that brightly illuminated screws (case B) loose contrast to
the metallic surface of the rotary disk, hence the enlarged
number of Misses, FP, and FN compared to case C. In addition,
cases D and E show that the classifier may also be trained
with screws of different colors and used in more varied
applications with diverse workshop items. However, in case
of multi-screw training (D, E), the KPIs are slightly impaired
compared to single-screw samples (A, B, C). From the lab
evaluation, we conclude that the proposed classifier is suited
for detecting screws in a workshop scenario with changing
lighting conditions (e.g., over the day) and screw types. The
lab scenario is further validated in a full manufacturing mock
application, which is discussed in [12].

B. Industrial Scenario

The industrial scenario is set up in cooperation with the
Goizper Group as part of the SHAREWORK project [13]. In

TABLE I: Confusion matrix for all lab test cases combined
(GT: ground truth).

GT\Estimate Screw Hole None
Screw 1902 93 2

Hole 141 1827 36
None 8 57 -

TABLE II: Total occurrences of TP, FP, Miss and FN over
all test sets of the lab scenario and corresponding scores. All
measures acc, pr, re, and r̃e are in %.

Set TP FP Miss FN acc pr re r̃e
A 964 18 16 20 94.7 98.2 96.4 98.0
B 893 23 12 95 87.3 97.5 89.3 90.4
C 999 1 1 0 99.8 99.9 99.9 100
D 472 10 5 34 90.6 97.9 92.4 93.3
E 401 13 4 85 79.7 96.9 81.8 82.5

D + E 873 23 9 119 85.3 97.4 87.2 88.0
Total 3729 88 38 234 91.2 97.7 93.2 94.1

TABLE III: Total occurrences of TP, FP, Miss and FN over all
test sets of the industrial scenario and corresponding scores.
All measures acc, pr, re, and r̃e are in %.

Set TP FP Miss FN acc pr re r̃e
A 1299 0 6 195 86.6 100 86.6 86.9
B 1357 0 0 143 90.4 100 90.4 90.4
C 1131 0 7 362 75.4 100 75.4 75.7
D 1069 0 0 431 71.2 100 71.2 71.3
E 1379 0 4 117 91.9 100 91.9 92.2

D + E 2448 0 4 548 81.6 100 81.6 81.7
Total 6235 0 17 1248 83.1 100 83.1 83.3

a HRC scenario, a human inserts screws into the rotary disk,
the robot detects, and, consequently, uses a powered screw
driver to fasten the screws. For detection, the robot is driven
in a configuration such that the camera plane is concentric
and parallel to the rotary disk (see Figure 2). Compared to the
mock in Section V-A, the real rotary table has 16 black M10
countersunk screws. In the industrial scenario, the proposed
method is not only used for detection, but also for localization
of the position of inserted screws.

To validate the industrial scenario, the same five test cases
and KPIs as in the lab scenario are used. Tests use 1500
samples each, the training procedure and training data amount
are equal to the lab case. The results and corresponding
KPIs are listed in Table III. In general, the results are
comparable to the lab scenario if the candidate is correctly
segmented. However, the number of undetected or wrongly
detected holes is significantly higher. This is due to sub-
optimal lighting conditions. In the lab scenario, a spot lamp
is mounted directly over the rotary disk and a diffuse light
source is placed to its side. The diffuse light has a strong
light intensity. In the industrial scenario, the base light is way
less intense. Hence, cases A and B are closer to C. In the lab
scenario, case C benefits from the better base illumination,
hence, the major decline in case C. To improve on the results,
an external diffuse light would have to be mounted close
to the workpiece, which was not viable in our test case.
However, the lower values in the KPIs by no means indicate
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Fig. 5: Importance of features along selected test cases.

that the method is unsuited for the lab scenario. Indeed, during
testing2,3, the robot is able to autonomously fasten the screws
successfully [13]. This indicates that the method is sufficiently
accurate in both, detection and segmentation (i.e., position
estimate of the screws) to insert the powered screw driver
into the hexagon socket (compare [14], [15]) and screw them
in, accordingly. In the demonstrator application, human and
robot are able to successfully and repeatably assemble the
rotary disk on the rotary table. Throughout, only minor delays
due to erroneous detections are observed, which mostly come
from partial occlusion while handing over the workpiece (in
addition to the already described challenges). Therefore, we
can conclude that the proposed method is robust and accurate
enough to be used in autonomous assembly tasks in real-world
environments.

C. Feature Descriptor

Finally, besides the general feasibility, the feature descriptor
itself is analyzed to give an understanding of its situational
suitability. The importance of each feature on the class de-
cision for both scenarios is shown in Figure 5. Noticeably,
features Black Screw and Bright Metal are most important in
all cases independent of screw type or illumination. In the
lab scenario, certain features dominate, while in the industrial
scenario, the feature importance is better distributed among
all features. In particular, the Intensity Pleateau and Intensity
Length feature become more important in case of countersunk
screws. This indicates that the features in the descriptor
are likewise well suited for the generic industrial scenario.
However, in certain situations adapting the feature set may
benefit the overall performance of the embedding classifier, as,
particularly in sparse lighting, certain features may be omitted.
This may accelerate the pipeline as these features do not need
to be computed.

VI. CONCLUSION

In this paper, we proposed an end-to-end pipeline to dis-
criminate screws from holes within the application of au-

2https://sharework-project.eu/integration-of-goizper-mock-up-at-stams-
laboratory/

3https://www.youtube.com/watch?v=vNPjjKpIDWw

tonomous manufacturing of concentric workpieces. The pro-
posed methods are designed for overlying or countersunk sil-
ver and black hexagon socket screws on a metallic workpiece.
To find candidates, we apply the Hough Circle Transform
combined with a region of interest that is easily parameterized
by the real dimensions of the workpiece. The classifier uses
a novel feature descriptor, which is composed of five simple
and understandable features. As classifier, a Random Forest
is used. For training, we apply an UI-based process to guide
non-expert users from plain images to a fully trained classifier,
ready for application. The proposed methods and the UI were
integrated in five lab scenarios and an industrial scenario. The
subsequent validation demonstrated good performance and us-
ability, particularly in the industrial case, which demonstrated
a successful human-robot collaborative manufacturing process.
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