MMGT: MULTIMODAL GRAPH-BASED TRANSFORMER FOR PAIN DETECTION
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ABSTRACT

Pain can be expressed from multiple modalities, such as
facial expressions, physiological signals, and behaviors. For
that reason, multimodal learning can greatly benefit automatic
pain detection and, more generally, a variety of tasks in the
field of affective computing. In this context, as one of our
main contributions, we leverage the multimodal interaction
among the intermediate modality representations, which are
rarely exploited in existing works. In order to capture the re-
lationships between multiple modalities, we propose the Mul-
timodal Graph-based Transformer (MMGT), in which uni-
modality feature extraction is performed using Transformers
and then fused using a Graph Convolutional Network (GCN).
We evaluated MMGT on the BP4D+ dataset, and the results
demonstrate the efficiency of our fusion framework for the
task of pain detection, which outperformed all the existing
approaches under multimodal settings. Our best results were
obtained using 2D facial landmarks, action units, and physi-
ological data, on which we achieved 94.95% and 94.91% of
accuracy and F1-score, respectively.

Index Terms— Multimodal Learning, Transformer,

Graph Convolutional Networks, Pain Detection.

1. INTRODUCTION

Pain is a complex and subjective human experience that pro-
foundly affects our well-being. The ability to accurately de-
tect and quantify pain has immense implications for various
fields in healthcare, such as medical diagnosis, remote mon-
itoring, sport medicine and rehabilitation. For instance, in
sports medicine and rehabilitation settings, pain detection can
assist in monitoring athletes’ pain levels during training, com-
petition, or recovery from injuries.

To design a robust pain detection model, it is crucial
to consider multiple modalities, such as facial expressions,
physiological indicators, and behavioral cues. As each modal-
ity is characterized by different statistical properties, it can
be beneficial to explore the inner relationship between them.
Multimodal machine learning (MML) is a hot multidisci-
plinary research field that involves the development of models
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that can extract and join information from multiple modali-
ties.

The multimodal interactions among the intermediate rep-
resentations of deep neural networks have led to very suc-
cessful applications. Recent studies have shown that the in-
termediate representations of deep models could be as good or
even better than using solely the last representation [8, 10, 14].
One core challenge in MML is the fusion of data from dif-
ferent modalities. Multimodal fusion strategy can be classi-
fied into three main categories: early, intermediate, and late
fusion. In early fusion, the input modalities can be fused
through concatenation, and the resulting feature vector is then
treated like unimodal input. For intermediate fusion, higher-
level representations from each input modality are learned
through a stack of layers to discover within-modality correla-
tions first and then are fused to discover cross-modality corre-
lations. Regarding the late fusion strategy, different classifiers
are trained on each modality and then an aggregation function
is used to make the final decision.

In the last few years, the Transformer [ | 2] model has been
the de facto choice for dealing with natural language process-
ing tasks [3]. In addition to language-related tasks, the Trans-
former has reached impressive results in many other areas,
such as computer vision [4] and multimodal learning [!]. Re-
cently, Graph Convolutional Networks have been widely used
in the context of modeling relational data. Similar to Trans-
formers, GCNs have shown successful results in multimodal
applications [6].

Motivated by the vast success of the Transformers and
GCN models for multimodal applications, we decided to in-
vestigate their relevance for the task of pain detection in mul-
timodal settings. We propose a new fusion framework to ex-
plore the multimodal relations between the different levels of
modality representations using a GCN. Our MMGT is built
upon the intermediate Transformer layers representations of
each modality. A graph is then constructed from these rep-
resentations, where each node is connected to all other nodes
within a modality and to nodes across other modalities corre-
sponding to the same level of representation. To verify the ef-
fectiveness of our proposed approach, we have conducted ex-
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Fig. 1. Illustration of our MMGT framework, which is composed of two main building blocks: Unimodal Transformer encoder,

and Multimodal Graph Convolutional Networks.

tensive experiments on the BP4D+ dataset [ 5]. Our MMGT
model outperforms all existing approaches for the pain detec-
tion task.

The contributions of this work are threefold and can be
summarized as follows: (1) the proposition of a new multi-
modal fusion framework that learns to combine the extracted
representations from different modalities using a GCN; (2)
to validate the proposed method and to further demonstrate
the complementarity between the modalities, we provided a
benchmark using single modalities and different combina-
tions of two and three input modalities; (3) to the best of our
knowledge, our MMGT is the first multimodal model trained
on facial landmarks, action units, and physiological data.

2. PROPOSED APPROACH

This section introduces our MMGT model. Figure 1 shows
an overview of the proposed framework, which is composed
of two key components: (1) for each modality, a unimodal
Transformer encoder extracts m intermediate representations;
and (2) a GCN that learns to fuse the extracted representa-
tions.

2.1. Unimodal Transformer Encoder

The first stage of our framework consists of linearly project-
ing the data associated to each input modality z1,.., 2, to
embedding vectors, 21, .., 2, each of dimension d,,. These
projections are performed by the following learnable weight
matrices W, € Rz, Xdm Wz, € Rzn Xdm  where
dg,,..,ds, represent the dimension of each input modality.

Then, we add positional encodings to each embedding vec-
tor to keep track of the relative order in the sequences. As
the embeddings vectors and positional encodings have the
same dimension, we can sum them up. Next, we feed the
newly updated embedding vectors to unimodal Transformer
encoders that will extract for each input modality a set of m
intermediate representations. For a given input modality z,
we obtain the following representations: hy1, .., f1ym,.

2.2. Multimodal Fusion GCN

In order to capture the relationships between the extracted in-
termediate representations from the input modalities, we pro-
pose to use a spectral domain GCN.

2.2.1. Graph Construction

Our proposed multimodal framework is based on the con-
struction of a graph G = (V, E') where V' denotes the set of
nodes initialized by the previously extracted representations,
and E is the set of edges characterizing their relationships.
We construct the graph as follows:

Nodes: every modality i is represented by a set of m nodes,
initialized using their previously extracted representations
hi1, .., him. For n input modalities, we have n xm nodes.
Edges: every two nodes within a modality are connected
together, and each node is also connected to nodes of other
modalities corresponding to the same level of representation.
We define the set of edges E = Ejntrq U Einter as the union
of the sets of intra-modality edges, denoted by F;,rq, and
inter-modality edge, denoted by F;,,;.., defined as follows:
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Einra = |J U U (i hir) 6]
i=1j=1k=1

EinteT = U U U (h'_;nhkz) (2)
i=1j=1k=1

2.2.2. Graph Learning

We trained a spectral deep GCN based on the previously con-
structed graph G. We define the graph convolution operator
asin [9]:

HWY = o(D 2 AD 2 HOW®)

where A = A + I,, denotes the adjacency matrix of the undi-
rected graph G with inserted self-connections, I,, represents
the identity matrix, D;; = Y j A;; is the diagonal degree ma-

trix, W) is a learnable weight matrix, and o(.) an activation
function. H' represents the matrix of activations in the [*"
layer; HO = X, where X is the matrix of input node feature.

2.2.3. Pain Classifier

We initialize our graph nodes with the previously extracted
representations from each modality. Let hY;,..,h0 ~ be

A nm

the set of initialized node representations of G. We obtain
hY ..., hE  as the features encoded by the GCN after the

R nm

k-th forward step.

k
1m»

k
nl»

hR = [nky, o hk o RE L RE

Then, we employed a global average pooling on the vector
h*, followed by a fully connected neural networks to predict
the class label.

3

3. EXPERIMENTAL RESULTS

3.1. Datasets

We performed all our experiments on the BP4D+ [15] dataset,
which includes 140 subjects performing a set of 10 tasks in
order to elicit 10 authentic emotions. This dataset includes
3D face meshes, 2D RGB videos, thermal videos, facial land-
marks (2D/3D/thermal), and eight physiological signals. Fa-
cial action units (AUs) were annotated for both the occur-
rence and intensity by FACS experts for four emotion cate-
gories (happiness, embarrassment, fear, and pain), on which
only the most facially-expressive segments were encoded. In
this study, we are only interested in those facially-expressive
frames associated with the four previous emotions, as done
in [5, 13].
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Table 1. Unimodal pain detection: comparison with a state-
of-the-art on the BP4D+ dataset.

2D 3D Thermal AUs Physio

Method Acc Fl1 Acc Fl1 Acc Fl1 Acc Fl1 Acc Fl1

Wuetal. [13] 91.59 89.46 91.27 89.30 83.53 83.37 83.24 8242

Transformer  92.99 9293 9245 92.15 86.81 8541 92.11 92.15 81.81 80.17

3.2. Data Processing

We first calculate the Euclidean distance between all peers
of landmarks for each video frame using the provided facial
landmarks (2D/3D/thermal), as it gives better results than us-
ing the raw landmarks. Next, physiological data were down-
sampled to the same frequency as the one associated with
the video recordings (25 fps). Afterward, for each modality,
we generated non-overlapping sliding windows of dimension
350. If the length of the data sequence is less than 350, we
pad the sequence with the data associated with the last frame.

3.3. Results

We carried out unimodal and multimodal pain detection ex-
periments on the BP4D+ dataset. In order to perform pain
detection as a binary classification among all four emotion
retained, we treat the pain sequences as positive classes, and
the remaining three as negative classes. Following prior
works [13], we employed a subject-independent 10-fold
cross-validation strategy. For evaluation, we used the ac-
curacy and weighted average F1-score.

3.3.1. Unimodal

In Table 1, we show the performances of the Transformer
model and those from a state-of-the-art method [13] for
the task of pain detection using the following modalities:
physiological data, 2D, 3D, and thermal facial landmarks.
The Transformer model outperformed the method proposed
by [13] in terms of accuracy and F1-score when using 2D, 3D,
and thermal facial landmarks. Specifically, the Transformer
model achieved a 1.40% and 3.47% improvement in terms
of accuracy and Fl-score, respectively, over the previous
method for 2D landmarks, a 1.18% and 2.05% improvement
for 3D landmarks, and a 3.28% and 2.04% improvement for
thermal landmarks.

To further demonstrate the relevance of Transformers for
multimodal applications, we evaluate our MMGT framework
which, as explained earlier, leverages multimodal interactions
between intermediate modality representations.

3.3.2. Multimodal and Ablation Study

Our experiments with multimodal data are summarized in Ta-
bles 2 and 3, on which we evaluate our proposed MMGT



Table 2. Multimodal pain detection: comparison with a state-of-the-art on the BP4D+ dataset, and ablation study on input

modalities, fusion techniques and model settings.

Two modalities

Three modalities

2D + Physio 3D + Physio  Thermal + Physio  AUs + Physio 2D + AUs + Physio 3D + AUs + Physio  Thermal + AUs + Physio
Method Acc Fl1 Acc Fl1 Acc Fl1 Acc F1 Acc Fl1 Acc Fl1 Acc Fl1
Wuetal [13] 9345 9137 92.66 9047 89.07 88.96 - - - - - - - -
MMT-early  92.65 92.63 90.99 90.74 85.67 84.49 90.79 90.43 93.31 93.33 92.03 92.01 92.42 92.23
MMT-inter 90.82 90.77 88.51 8827 79.14 80.15 94.06 94.01 93.17 93.31 93.62 93.59 93.66 93.67
MMT-late 91.02 91.04 87.39 87.79 77.69 78.92 93.89 9397 93.64 93.79 92.76 92.92 93.62 93.74
MMT-all 93.53 9338 9155 91.19 86.35 85.78 93.70 93.74 94.09 94.00 93.66 93.53 93.39 93.43
MMGT (ours) 93.90 93.82 93.72 93.59 8945 89.14 94.07 94.10 94.95 94.91 94.41 94.31 93.87 93.93

Table 3. Comparison of our pain detection method with state-
of-the-art results.

Method Acc  FI (pain class)
AUs + Physio

Hinduja et al. [5] 89.20 75.00
MMGT (Ours) 94.07 88.33
Method Acc F1
2D + Physio

Szczapa et al. (late fusion) [11] 82.77 76.32
Szczapa et al. (early fusion) [11]  84.32 78.83
Huang et al. (early fusion) [7] 87.94 87.16
Huang et al. (late fusion) [7] 89.36 89.13
Choo et al. (late fusion) [2] 89.08 88.68
Choo et al. (early fusion) [2] 89.80 89.46
Wuet al. [13] 93.45 91.37
MMGT (Ours) 93.90 93.82

model against machine learning [5], deep learning [2, 7], and
geometric-based models [1 1, 13]. The following pain recog-
nition approaches [2,7, | 1] have been reimplemented by [13]
and the scores reported in Table 3 are from [13]. We trained
our models on different combinations of the modalities given
in Table 1. We first combined physiological data with all other
four modalities, as shown in Table 2. Then, for the combina-
tions of three modalities, we combined AUs and physiological
data with all types of facial landmarks.

Using two modalities, MMGT achieve state-of-the-art re-
sults on all tested combinations. Compared to Wu et al. [13],
the largest improvements are observed for the combination of
3D landmarks and physiological data, on which our MMGT
model outperformed the later by 3.12% in terms of F1-score.
Among all tested combinations of two modalities, our best
results were obtained using AUs and physiological data, on
which our model achieved 94.07% and 94.10% of accuracy
and Fl-score, respectively. Compared to Hinduja et al. [5],
the only state-of-the-art method which also combines AUs
and physiological data, we observe an improvement of 4.87%
and 13.33% in terms of accuracy and F1-scores, respectively.

It is worth mentioning that, for a fair comparison with [5],
we reported the Fl-score only for the pain class in Table 3.
Whereas, to provide a fair comparison with the other models,
the remaining F1-scores reported in Tables 2 and 3 are the
weighted average F1-score for the pain and non-pain classes.

Given that our best combination of two modalities were
achieved with AUs and physiological data, we tested if we
could further improve the MMGT results by considering a
third modality, leading to the combination of AUs, physio-
logical data and each one of the landmark data (2D, 3D and
thermal). As shown in Table 3, our hypothesis was validated
in the cases where 2D and 3D landmarks were considered as
a third modality, but not when thermal landmarks were in-
cluded. Moreover, the best results among all tested meth-
ods were obtained with MMGT trained on 2D landmarks,
AUs and physiological data. The latter achieved respectively
94.95% and 94.91% of accuracy and F1-score, establishing a
new state-of-the-art for the pain detection task on BP4D+.

As part of our ablation study, we observed that fusing
modalities representations with GCNs yields the highest eval-
uation scores when compared to traditional fusion methods,
such as early, intermediate and late fusion using Transform-
ers. In Table 2, we present our evaluation scores obtained
with the aforementioned fusion techniques for different com-
binations of two and three modalities. More precisely, MMT-
early concatenates at the input level the different modalities,
MMT-inter concatenates the final representation layer of each
Transformer, and MMT-late aggregates the final decision of
each Transformer. As we can see in Table 2, MMGT (the only
graph based model) outperformed all fusion techniques on the
task of pain detection for all combination of two and three
modalities. We believe that these positive results are mainly
attributed to two components: (1) the use of intermediate
Transformer representations, and (2) the use of a graph to fa-
cilitate their fusion. Table 2 shows that, in general, traditional
fusion techniques result in inferior performance compared to
the best-performing modality used individually, which does
not hold true for MMGT. For example, fusing physiological
data with 2D landmarks using traditional fusion techniques
leads to a drop of at least 0.30% in terms of Fl-score com-
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pared to 2D landmarks used alone (see Table 1). On the other
hand, MMGT improves upon all individual modalities.

Finally, to conduct an ablation study on the use of GCNs
to efficiently combine the intermediate representations of
multiple modalities, we compare MMGT with a multimodal
Transformer (MMT-all) which does not make use of graphs.
More exactly, MMT-all directly concatenates the interme-
diate representations h{;,..,h¥ . which are then fed into a
fully-connected layer for final decision. As shown in Table
2, MMGT outperforms MMT-all for all combinations of two
and three modalities. For instance, when using 3D landmarks
and physiological data, we remarked a difference of 2.17%
and 2.40% in accuracy and F1-score, respectively.

Those results bring to light several aspects of MMGT
multimodal learning. First, the complementarity between dif-
ferent modalities (e.g. adding physiological data with visual
features consistently enhances pain detection performance).
Second, the successive addition of modalities nearly always
lead to better classification results. Third, the way of lever-
aging the multimodal interactions between different learned
representations has a high impact on the final task at hand.

4. CONCLUSION

In this study, we tackled the problem of multimodal learn-
ing for pain detection. We propose a new multimodal fu-
sion framework called Multimodal Graph-based Transformer
(MMGT), which employs a graph to capture the multimodal
relations between the intermediate representations extracted
from unimodal Transformers. We conducted extensive ex-
periments on the BP4D+ dataset, on which we established a
new state-of-the-art for pain detection. Our best results were
obtained using 2D facial landmarks, AUs, and physiological
data, on which we achieved 94.95% and 94.91% of accuracy
and F1-score, respectively. In a future work, we plan to inves-
tigate our proposed framework on other multimodal datasets.
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