
Rescaling of Symbol Counts

for Adaptive rANS Coding

Tilo Strutz

Coburg University, Department of Electrical Engineering and Computer Science

Friedrich-Streib-Str. 2, 96450 Coburg, Germany

Abstract—The abbreviation rANS stands for a relatively new
method of arithmetic coding based on asymmetric numeral
systems (ANS) which combines the advantages of arithmetic
coding in terms of performance and the advantages of Huffman
coding in terms of speed.

Compared to conventional arithmetic coding methods, the
mathematical apparatus is slightly different which has the con-
sequence that the decoding order is reversed to the encoding
order, i.e. the processing follows the last-in-first-out principle.
This makes it somewhat difficult to design the coding process to
adapt to changing symbol statistics, and therefore rANS coding
has so far only been applied in settings with fixed statistics. In
particular, the frequent rescaling of statistics required to reduce
the influence of old symbols becomes a problem when the order
of processing is different on the encoder and decoder sides.

This paper proposes a new method that allows adaptive coding
within the framework of rANS coding and additionally offers
the possibility of rescaling the symbols frequencies. Investigations
show that this method enables the same compression performance
for rANS as for conventional arithmetic coding.

Index Terms—ANS, adaptive coding, rescaling of statistics,
asymmetric numeral system

I. INTRODUCTION

Entropy coding is a fundamental processing step in any

efficient data compression system. Based on the given or

estimated probabilities pi of the symbols si to be transmitted,

the entropy coding step assigns a certain number or fraction

of bits to each symbol according to the information content

I(si) = log2(1/pi). The best known method is Huffman-

Coding named after its inventor [1]. It replaces each symbol

with the corresponding binary code word. The assignment of

bit fraction is not possible with Huffman-Coding. This disad-

vantage does not apply if arithmetic coding is used instead

[2]. Arithmetic coding uses a number interval that is divided

into subintervals. The relative width of these subintervals

corresponds to the symbol probabilities.

This paper focuses on aspects of a special version of arith-

metic coding, the so-called rANS coding [3], [4]. The great

advantage of rANS coding is that the required computational

steps can be realized by very simple operations if certain

parameters are chosen appropriately, allowing a high data

throughput (as with Huffman coding) is possible. Moreover, it

has the property of achieving a similar reduction of the coding

redundancy ∆R(x) as conventional arithmetic coding. This

makes rANS an attractive alternative for applications where

Huffman coding has been used so far and a fully-adaptive

approach does not promise any advantage.

Due to these benefits, ANS-based coding is already being

integrated into commercial systems [5] and has been consid-

ered for a new standard in image compression [6].

With conventional arithmetic coding, the decoder may have

to read in additional dummy bits to determine the final interval.

An rANS decoder, on the other hand, processes only the

bits that are actually output by the encoder. This advantage

supports the interleaving of two or more encoding processes

[7]. In [8] it is studied how real symbol distributions are

approximated in ANS systems and [9], [10] investigate the

tabular variant (tANS). Tabular ANS coding was also used for

image compression in [11]. Index compression for databases

is dealt with in [12] and [13]. [14] describes an application

of rANS to the compression of detector data recorded during

collisions in a particle accelerator. In application to image data

compression, rANS is used as an entropy coding technique by

[15]. There are also two reviews on ANS, most of which refer

to the original publications of Duda [16], [17].

The main disadvantage of rANS coding is that the symbols

are processed in last in, first out (LIFO) order making the adap-

tive processing difficult. So far, it has not been scientifically

investigated to what extend the advantages of rANS coding

can also be applied to fully-adaptive coding. Its use has until

now been limited to scenarios with static, i.e., one-time fixed

distribution models. Therefore, rANS coding has not yet been

universally applicable and many applications could not benefit

from its advantages.

This paper proposes a method that not only facilitates fully-

adaptive processing of rANS coding, but additionally provides

a technique for rescaling the symbol counts. This rescaling

supports faster adaptation by a process of forgetting symbols

which have not been observed in the recent past of the coding

procedure.

II. BASICS

Conventional arithmetic coding

The coding procedure relies on an interval [0; 1) that is di-

vided into K subintervals, where K is the number of different

symbols (size of the alphabet). The size of the individual

subintervals corresponds to the symbols’ probability. The

individual interval boundaries thus result from the cumulative

probabilities:

pk(si) =pk(si−1) + p(si) ∀i = 1, 2, . . . ,K (1)

with pk(s0) = 0.0 .

Depending on the transmitted symbol, the algorithm zooms

into the corresponding subinterval and subdivides it again.

With each new symbol to be encoded, the actual subinterval

becomes narrower and the current position is represented by

a number 0 ≤ Sn < 1. With an assumed coding sequence

a, b, c, . . . this number is calculated as follows:

Sn :=pk(a
−) + p(a) · . . .

(

pk(b
−) + p(b) ·

(

pk(c
−) + p(c) · (. . .)

))

. (2)

The minus symbol indicates here the lower limit of the

subinterval. For example, for the symbol ‘a’ pk(a
−) = 0, for

‘b’ pk(b
−) = pk(a) = p(a), and for ‘c’ pk(c

−) = pk(b) =
p(a) + p(b). From (2) it can be seen that the approximate

boundaries of the final interval are determined by the first585ISBN: 978-9-4645-9360-0 EUSIPCO 2023

coded symbol. The further sequence of coded symbols merely

refines these limits.

For a practical implementation, all interval boundaries must

be scaled to integer values [18], [19]. Absolute frequencies

H(s) replace the probabilities:

H(s) ≈ p(s) ·N

Hk(s) ≈ pk(s) ·N ,

with N as the total number of symbols in the sequence

to be encoded. The boundaries of the subintervals are now

represented by cumulative frequencies Hk(si) instead of cu-

mulative probabilities. The position in the actual interval is

determined by the lower interval limit low and the interval

width range. Progressive interval narrowing is counteracted

by regular doubling of the numbers low and range. The

decoder is able to trace the current interval position back to the

transmitted symbol and decodes the symbols in the same order

in which they have been encoded: first in, first out (FIFO).

Compared to Huffman coding, arithmetic coding enables

significantly better compression, especially for small alphabets

and special distribution models. A disadvantage is the higher

computational effort and thus time requirement.

There are three possibilities for the operation of an arith-

metic coder:

1) Non-adaptive: The occurrence probabilities of the sym-

bols are determined once using a training data set and

all cumulative frequencies are determined on this basis.

All symbol sequences are processed with this fixed

distribution model.

2) Semi-adaptive (static): The symbols of the actual se-

quence to be coded are counted, all cumulative frequen-

cies are determined on this basis and the sequence is

processed with this distribution model.

3) Fully-adaptive (dynamic): The distribution model typi-

cally starts with a uniform distribution (pi = p), i.e.,

all counters are reset at the beginning. After the transfer

of a symbol, its counter is incremented and all affected

cumulative frequencies are updated.

If the distribution of symbols changes within a sequence

to be coded, the fully-adaptive mode of operation can lead to

a coding gain because the distribution model automatically

adapts to the specific conditions and the transmission of

symbols frequencies is not required.

Coding based on asymmetric numeral systems

Asymmetric numeral systems (ANS) offer a new approach

to entropy coding [3], [4]. The so-called range-ANS coding

(rANS) is similar to arithmetic coding in many aspects.

In analogy to the equation (2), the status of the coding

process is given by

Sn := Sn−1/p(sn) + pk(s
−

n) . (3)

Compared to the interval modification according to (2), there

are two essential changes. First, the division (instead of

multiplication) by the probability p(sn) of the symbol sn to

be encoded increases the subintervals instead of decreasing

them. And secondly, the subsequent addition of the cumulative

probability pk(s
−
n) causes the boundaries of the final interval

to no longer depend on the first, but on the last encoded

symbol. The latter has drastic effects on the order in which the

symbols are processed. The decoder must start with the last

encoded symbol and decodes the entire sequence backwards.

The rANS coding works according to the LIFO principle: last

in, first out.

As with conventional arithmetic coding, the practical im-

plementation requires integers. Let H(s) be the frequency of

symbol s and Hk(s) the corresponding cumulative frequency.

With the substitutions

p(s) =
H(s)

M
and pk(s) =

Hk(s)

M
with M =

∑

∀s

H(s)

(4)

we derive from (3):

Sn := Sn−1 ·M/H(sn) +Hk(s
−

n)/M

Sn ·M := Sn−1 ·M ·M/H(sn) +Hk(s
−

n)

Sn := Sn−1 ·M/H(sn) +Hk(s
−

n) . (5)

As the subintervals (strictly speaking Sn) increase in the

process of encoding, the numerical value of Sn is scaled down

when it exceeds a certain threshold.

A fully-adaptive mode of operation, which merely incre-

ments the symbol counters as described above and adjusts the

symbol distribution in the form of the accumulative frequen-

cies, is not readily possible. Therefore, rANS coding has so

far been explicitly recommended as an alternative to Huffman

coding with static mode of operation [4].

III. METHOD

The principles of adaptation and rescaling are first explained

for conventional compression systems, in which the encoder

and decoder process all symbols in the same order first in,

first-out (FIFO). A new method is then proposed for how this

can also be achieved for rANS coding, where the decoder has

to process the symbols in reverse order, i.e. last in, first out

(LIFO).

A. Principle of adaptation and rescaling in FIFO systems

As described in the preceding section, the full-adaptive

mode typically starts with equal probabilities for all symbols.

All counts are initially set to one. This is the lowest possible

count and ensures that the symbols are distinguishable during

the coding process. After coding a particular symbol, the

encoder and decoder synchronously update the symbol distri-

bution by incrementing the count of the transmitted symbol.

In many applications, a drift from one subset of dominant

symbols to another subset can be observed. If one wishes to

reflect the dominance of the new subset as fast as possible,

a mechanism must be introduced that allows to forget the

influence of “old” symbols. This can easily be achieved, for

example, by scaling down all counts either periodically or at

certain events. Tab. I shows a toy example with an alphabet

A = {a, b}. Column “si” shows the order in which 16 symbols

are transmitted. The four columns headed “no rescaling” show

how the counts increase, the corresponding probability of

the encoded symbol, and the associated information content

I(si) = log2 (1/p(si)) in bit. The probabilities are estimated

as the quotient of the individual count of the symbol to be

transmitted and the sum of all counts. After the symbol has

been sent or has been received by the decoder, its count can

be incremented. An ideal entropy coding stage would output

a total of 17.05 bit.

The right part of the same table shows how things change

when rescaling is done after every four symbols by simply

bit-shifting the counts to the right. The first rescaling event586

TABLE I
EXAMPLE PROCESS OF ADAPTATION AND RESCALING FOR FIFO SYSTEMS

no rescaling with rescaling
counts [bit] counts [bit]

i si a b p(si) I(si) a b p(si) I(si)
0 1 1 1 1

1 a 2 1/2 1.000 2 1/2 1.000
2 a 3 2/3 0.585 3 2/3 0.585
3 a 4 3/4 0.415 4 3/4 0.415
4 a 5 4/5 0.322 5 4/5 0.322

2 1 rescaling

5 a 6 5/6 0.263 3 2/3 0.585
6 b 2 1/7 2.807 2 1/4 2.000
7 b 3 2/8 2.000 3 2/5 1.322
8 a 7 6/9 0.585 4 3/6 1.000

2 1 rescaling

9 b 4 3/10 1.737 2 1/3 1.585
10 b 5 4/11 1.459 3 2/4 1.000
11 b 6 5/12 1.263 4 3/5 0.737
12 b 7 6/13 1.115 5 4/6 0.585

1 2 rescaling

13 b 8 7/14 1.000 3 2/3 0.585
14 b 9 8/15 0.907 4 3/4 0.415
15 b 10 9/16 0.830 5 4/5 0.322
16 b 11 10/17 0.766 6 5/6 0.263

total: 17.05 total: 12.72

changes the counts from (5, 1) to (2, 1), the second from (4, 3)
to (2, 1), and the rescaling after the 12th symbol reduces the

counts from (2, 5) to (1, 2). The change from the initially

dominant a to the symbol b is now reflected more quickly

by the probabilities and the total amount of information to be

transmitted is reduced to 12.72 bit. The questions of how often

rescaling should be done and how the rescaling is actually

carried out need to be answered depending on the specific

application and are not discussed in this paper.

B. Principle of adaptation in LIFO systems

The proposed concept for LIFO Systems is not to reverse the

symbol order at the decoder stage, but to reverse the order at

the encoder. That is, the decoder operates in the same manner

as described in the previous subsection. However, the encoder

must instead start at index 16 and with the symbol counts that

would have been reached after encoding all symbols in forward

mode. According to Table I, the counts have to be initialised

with 7 for a and 11 for b. This requires the encoder to count

all symbols in advance. This is not a disadvantage, since

the encoder also has to determine the symbols distribution

in semi-adaptive mode in advance and additionally pass this

information on to the decoder as side information. During

the encoding process, a counter is decremented before the

corresponding symbol is encoded.

For better understanding, the pseudo code of encoder and

decoder is given in Listing 1. The source-code snipped is

based on the knowledge of the alphabet size K and the

total number N of symbols to be transmitted. The encoder

processes all N symbols stored in the array sequ[], the

decoder needs this array to save the decoded symbols. A

second array count[] of size K contains the symbols

histogram or distribution. It is initialized by a flat distribution

(lines 6-9). The encoder first has to simulate the decoder

process (forward processing) in terms of counting the symbol

(lines 13-17), because it must start the backward processing

with counts that the decoder knows after it has received

all N symbols. Then, the encoder processes the symbols of

sequence sequ[] starting with the last symbol (lines 18-

23). Before this symbol can be encoded, its count must be

Listing 1. Pseudo code of adaptive LIFO coding. See text for details

1 N := number of symbols in sequence

2 K := number of different symbols in alphabet

3 sequ[] ... symbol sequence comprising N symbols

4 count[] ... histogram of symbols, K elements

6 for symbol = 0:K-1

7 { // operate as encoder
8 count[symbol] := 1; // initialize array
9 }

11 if encoder_flag

12 {

13 for i = 0:N-1

14 { // count symbols, simulate decoder process

15 symbol := sequ[i];

16 count[symbol] := count[symbol] + 1;

17 }

18 for i = N-1:-1:0

19 { // encode symbols in reverse order
20 symbol := sequ[i]; // get current symbol
21 count[symbol] := count[symbol] - 1; // decrement

corresponding count

22 encode(symbol, count);// decode symbol
23 }

24 }

25 else // do the decoding
26 {

27 for i = 0:N-1

28 { // decode symbols in normal order
29 symbol := decode(count); // decode symbol

30 sequ[i] := symbol; // put current symbol
31 count[symbol] := count[symbol] + 1; // increment

corresponding count
32 }

33 }

decremented. This procedure is reversing of what the decoder

has to do, namely first decoding the symbol, then incrementing

the corresponding count and finally storing the symbol in the

array (lines 27-32).

C. Histogram rescaling in LIFO systems

Similar to explanation above, the mode of operation of the

rescaling process can also be deduced. The right part of Table

I shows which counts the decoder uses when decoding the

symbols from index 1 to index 16. The encoder must not only

count the symbols in advance, but it also has to simulate the

rescaling process. It cannot simply multiply the counts by 2

when a rescaling position is reached, because it is not known

whether the new upscaled count has to be an odd or even

number. This means that the encoder must not only store the

final counts, but additionally the counts at each rescaling event.

The pseudo code of encoder and decoder is given in

Listing 2. Compared to the procedure without rescaling, the

encoder must maintain an array countsR[][] containing

the symbol counts before a rescaling event takes place (at the

decoder). Hence, the encoder simulates the decoder process

in terms of counting the symbols and in terms of rescaling

the counts (lines 21-30). Together with the symbol’s counters,

the positions of the rescaling events must also be stored

(line 28), as this information is utilized during the actual

encoding process. The number of rescaling events R should

be set in advance to facilitate the dynamic allocation of array

countsR[][]. Note that the rescaling interval must be

smaller than the number N of symbols; otherwise, the index

r is not set correctly in this pseudo code. The chosen integer

division of the count values by two (bit-shift to the right) is

only an example and other strategies could be used depending

on the application.587

Listing 2. Pseudo code of adaptive LIFO coding with rescaling of symbols
distribution. See text for details

1 N := number of symbols in sequence

2 K := number of different symbols in alphabet

3 R := number of rescaling events

4 sequ[] ... symbol sequence comprising N symbols

5 idxR[] ... symbol index at which rescaling takes place

6 count[] ... histogram of symbols, K elements

7 countR[][] ... counts before downscaling, RxK elements

8 rescaleInterval ... < N

10 for symbol = 0:K-1

11 {

12 count[symbol] := 1; // initialize array
13 }

15 r := 0; // rescaling index
16 if encoder_flag

17 {

18 for i = 0:N-1

19 { // count symbols, simulate decoder process
20 symbol := sequ[i]; // get current symbol
21 if (i+1) % rescaleInterval == 0 // example event
22 { // do the rescaling
23 for symbol = 0:K-1

24 {

25 countR[r][symbol] := count[symbol]; // save count
26 count[symbol] := count[symbol] >> 1; // downscale
27 }

28 idxR[r] := i; // save event location
29 r := r + 1;

30 }

31 count[symbol] := count[symbol] + 1;

32 }

33 r := r - 1; // go back to last entry

34 for i = N-1:-1:0

35 { // encode symbols in reverse order
36 symbol := sequ[i]; // get current symbol
37 count[symbol] := count[symbol] - 1; // decrement

corresponding count
38 if i == idxR[r]

39 { // position of rescaling event
40 for symbol = 0:K-1

41 {

42 count[symbol] := countR[r][symbol]; // restore
43 }

44 if r > 0 { r := r - 1; }

45 }

46 encode(symbol, count); // encode symbol
47 }

48 }

49 else // do the decoding
50 {

51 for i = 0:N-1

52 { // decode symbols in normal order
53 symbol := decode(count); // decode symbol
54 sequ[i] := symbol; // put current symbol
55 count[symbol] := count[symbol] + 1; // increment

corresponding count
56 if (i+1) % rescaleInterval == 0

57 { // do the rescaling
58 for symbol = 0:K-1

59 {

60 count[symbol] := count[symbol] >> 1; // downscale
61 }

62 }

63 }

64 }

IV. INVESTIGATIONS AND RESULTS

The described method of rescaling in combination with

rANS coding has been extensively investigated. Here, the

prosed scheme is exemplarily demonstrated using three image

signals (Figure 1). The first is an original image (screenshot).

The other two images are prediction-error signals obtained

with two different prediction schemes. Each of the colour

images has been converted into a byte stream so that all

red intensities are sampled first, then all green intensities,

and all blue signal values. This is also known as planar

mode RRR..GGG..BBB. The rANS coding is additionally

compared with the conventional arithmetic coding based on

(a)

(b)

(c)

Fig. 1. Images of size 1785× 1225 that have been used as input for coding
tests: (a) the original image x, (b) prediction error image e1 based on a
simple prediction method, (c) prediction error image e2 based on an advanced
prediction method

[19]. Table II contains the achieved compression ratios:

CR =
number of bytes in raw format

number of bytes in compressed file

Arithmetic coding (AC) and rANS coding have been tested in

three different operating modes. The static mode determines

the symbol distribution in advance and does not change it

during the curse of coding. Since the decoder needs to know

this distribution, it is transmitted as side information. The

number of bits to be spent on transmission is adaptively

chosen for each single count, resulting in about 600 additional588

TABLE II
COMPRESSION RATIOS DEPENDING ON THE CHOSEN CODING METHOD

AND THE MODE OF OPERATION.

image x image e1 image e2
method AC rANS AC rANS AC rANS

static 1.614 1.618 3.472 3.494 4.843 4.878
adaptive 1.616 1.619 3.485 3.493 4.863 4.860
rescaling 2.527 2.522 4.389 4.400 6.085 6.097

bytes per image. The adaptive mode does not require this

kind of transmission, because the coding process starts with

counts equal to one (at the decoder). The third mode com-

bines adaptive coding with periodic rescaling with a rescaling

interval of 212. As can be seen, both, conventional arithmetic

coding and rANS coding, achieve about the same compression

performance and both significantly benefit from rescaling.

V. SUMMARY

The paper has explained and demonstrated a new method

that enables adaptive processing in the context of rANS cod-

ing. Despite the diametric access of symbols (LIFO principle)

rANS can not only be successfully combined with an adapta-

tion of symbol counts, but a technique has also been developed

that enables the rescaling of these counts. This opens up an

area of applications for rANS coding in which fully-adaptive

processing is a better option than static processing.

VI. ACKNOWLEDGEMENTS

This work has been funded by the Deutsche Forschungsge-

meinschaft (DFG, German Research Foundation) - 438221930.

REFERENCES

[1] D. Huffman, “A method for the construction of minimum redundancy
codes,” Proc. of the IRE, vol. 40, pp. 1098 – 1101, September 1952.

[2] J. Rissanen and G. Langdon, “Arithmetic coding,” IBM Journal of

Research and Development, vol. 23, pp. 149 – 162, March 1979.
[3] J. Duda, “Asymmetric numeral systems: entropy coding combining

speed of huffman coding with compression rate of arithmetic coding,”
January 2013. [Online]. Available: https://arxiv.org/abs/1311.2540

[4] J. Duda, K. Tahboub, N. J. Gadgil, and E. J. Delp, “The use of
asymmetric numeral systems as an accurate replacement for huffman
coding,” in 2015 Picture Coding Symposium (PCS), 2015, pp. 65–69.

[5] Y. Collet, “Zstandard,” accessed: January 12, 2023. [Online]. Available:
https://facebook.github.io/zstd/

[6] “ISO/IEC 18181-1:2022: Information technology - JPEG XL image
coding system - part 1: Core coding system.” [Online]. Available:
https://www.iso.org/standard/77977.html

[7] F. Giesen, “Interleaved entropy coders,” 2014. [Online]. Available:
https://arxiv.org/abs/1402.3392

[8] H. Yokoo and T. Shimizu, “Probability approximation in asymmetric
numeral systems,” in 2018 International Symposium on Information

Theory and Its Applications (ISITA), October 2018, pp. 638 – 642.
[9] I. Blanes, M. Hernández-Cabronero, J. Serra-Sagristà, and M. W. Mar-

cellin, “Redundancy and optimization of tANS entropy encoders,” IEEE

Transactions on Multimedia, vol. 23, pp. 4341–4350, 2021.
[10] D. Kosolobov, “The efficiency of the ans entropy encoding,” 2022.

[Online]. Available: https://arxiv.org/abs/2201.02514
[11] T. Alonso, G. Sutter, and J. E. L. De Vergara, “LOCO-ANS: An

optimization of JPEG-LS using an efficient and low-complexity coder
based on ans,” IEEE Access, vol. 9, pp. 106 606–106 626, 2021.

[12] A. Moffat and M. Petri, “Ans-based index compression,” in Proceed-

ings of the 2017 ACM on Conference on Information and Knowledge

Management, November 2017, pp. 677 – 686.
[13] ——, “Index compression using byte-aligned ans coding and two- di-

mensional contexts,” in Proceedings of the Eleventh ACM International

Conference on Web Search and Data Mining, February 2018, pp. 405 –
413.

[14] M. Lettrich, “Fast and efficient entropy compression of alice data using
ans coding,” in Proceedings of EPJ Web Conf, vol. 245, November 2020.

[15] B. L. C. Barzen, F. Glazov, J. Geistert, and T. Sikora, “Accelerated
deep lossless image coding with unified paralleleized GPU coding
architecture,” 2022. [Online]. Available: https://arxiv.org/abs/2207.05152

[16] J. Townsend, “A tutorial on the range variant of asymmetric numeral
systems,” 2020. [Online]. Available: https://arxiv.org/abs/2001.09186

[17] P. A. Hsieh and J.-L. Wu, “A review of the asymmetric numeral system
and its applications to digital images,” Entropy, vol. 24, no. 3, 2022.
[Online]. Available: https://www.mdpi.com/1099-4300/24/3/375

[18] I. Witten, R. Neal, and J. Cleary, “Arithmetic coding for data compres-
sion,” Communications of the ACM, vol. 30, pp. 520 – 540, Juni 1987.

[19] A. Moffat, R. M. Neal, and I. H. Witten, “Arithmetic coding revisited,”
in Proceedings of the Data Compression Conference, Snowbird, Utah,
March 1995, pp. 202 – 211.

589

