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Abstract—This paper describes an audio-visual speech en-
hancement (AV-SE) method that estimates from noisy input audio
a mixture of the speech of the speaker appearing in an input video
(on-screen target speech) and of a selected speaker not appearing
in the video (off-screen target speech). Although conventional
AV-SE methods have suppressed all off-screen sounds, it is
necessary to listen to a specific pre-known speaker’s speech
(e.g., family member’s voice and announcements in stations) in
future applications of AV-SE (e.g., hearing aids), even when users’
sight does not capture the speaker. To overcome this limitation,
we extract a visual clue for the on-screen target speech from
the input video and a voiceprint clue for the off-screen one
from a pre-recorded speech of the speaker. Two clues from
different domains are integrated as an audio-visual clue, and the
proposed model directly estimates the target mixture. To improve
the estimation accuracy, we introduce a temporal attention
mechanism for the voiceprint clue and propose a training strategy
called the muting strategy. Experimental results show that our
method outperforms a baseline method that uses the state-of-the-
art AV-SE and speaker extraction methods individually in terms
of estimation accuracy and computational efficiency.

Index Terms—Audio-visual speech enhancement, speaker ex-
traction, multimodal, deep learning

I. INTRODUCTION

Audio-visual speech enhancement (AV-SE) aims to extract a
target speaker’s speech from a noisy input signal (a.k.a. speech
enhancement) by using an additional visual clue of the speaker,
typically lip movement [1], [2]. As lip movement helps us to
track the synchronizing target speech contaminated by non-
speech noise or interfering speech, AV-SE works robustly to
various kinds of noise. AV-SE has the potential for practical
applications, such as hearing aids [2], [3], telecommunica-
tion [4], and automatic speech recognition front end [5].

The standard approach of AV-SE is to extract only the
speech of the speaker appearing in an input video (on-
screen target speech) and suppress the other sounds (off-screen
sounds). Based on the fact that humans improve their speech
perception by watching a speaker’s face [6], a pioneer study on
AV-SE [7] applied a statistical speech enhancement model that
used lip shape features. Since deep neural networks (DNNs)
appeared, DNN-based methods [1], [5] have been the major
approach of AV-SE because of DNNs’ high capability of ex-
tracting speech and fusing multimodal information. Recently,
several studies have also tackled practical problem settings
such as temporal occlusion of the speaker’s mouth [8], [9].
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Fig. 1. The proposed method directly extracts the mixture of on-screen and
off-screen target speech from noisy audio using the corresponding video and
enrollment utterance.

In some practical situations, however, users need to listen
to a pre-known speaker’s speech in the off-screen sounds as
well as the on-screen target speech. For example, when AV-SE
is applied to hearing aids that extract an interlocutor’s speech,
young users should always pay attention to what their parents
or teachers say, even when users’ sight does not capture the
speaker’s face. Announcements in stations also should not be
suppressed for user safety. These situations call for a method
that can simultaneously extract the on-screen target speech
and selected off-screen speech (off-screen target speech) from
a noisy input signal, where the voice characteristics of the
off-screen target speaker are pre-known.

A straightforward approach to this situation is to extract
each target speech individually and mix them. The on-screen
target speech can be extracted by AV-SE with the help of the
corresponding visual clue. The off-screen one can be extracted
by speaker extraction [10], [11] with the help of a voiceprint
clue from a pre-recorded speech of the speaker (enrollment
utterance). However, the mixing operation deteriorates the
output signals because of the accumulation of estimation
errors, such as artifacts and remaining non-speech noises
or interfering speech in each output. This approach is also
computationally inefficient because two independent models
are required to obtain each output from the same input audio,
which would be undesirable in low-resource devices [12].

In this paper, we propose a unified AV-SE model with
selective off-screen speech extraction that directly estimates a
mixture of the on-screen and off-screen target speech (Fig. 1).
At the heart of our method is the multimodal fusion of two
clues obtained from different domains. Specifically, we extract
the visual clue for the on-screen target speech from the input
video and the voiceprint clue for the off-screen target speech
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from the enrollment utterance. These clues are integrated as
an audio-visual clue, with which a multi-speaker extractor
extracts the target mixture from the input audio. End-to-end
training enables our model to perform more accurately than
the mixing-based approach.

The main contribution of this study is to propose a compu-
tationally efficient yet high-performance method for a novel
practical problem setting in AV-SE. Our model further im-
proves its performance by attention mechanism and muting
strategy. When the off-screen target speech temporally does
not exist in the noisy input audio, the model does not need
to refer to the voiceprint clue. We thus estimate the voice
activity of the off-screen target speech and calculate tempo-
ral attention, which controls how much the voiceprint clue
contributes to the audio-visual clue. We also utilize a muting
strategy, where either on-screen or off-screen target speech in
the noisy input audio is muted during training. This encourages
the model to strongly bind each clue and the characteristics of
the corresponding signal. Experimental results show that our
method outperforms a straightforward baseline method (even
the combination of the state-of-the-art AV-SE and speaker
extraction methods) in terms of the quality of output signals
and the number of model parameters.

II. RELATED WORK

This section reviews target speaker extraction methods in
terms of the modalities of their clues. We also briefly consider
denoising methods as alternative approaches to our problem.

A. Target speaker extraction

Target speaker extraction aims to extract the target speech
from a noisy input signal using additional information about
the speaker. Existing methods can mainly be categorized
into two approaches: visual-clue-based and audio-clue-based.
The visual-clue-based approach, namely AV-SE, utilizes lip
movements [1], [2] or crops of face images [5] synchronized
with the target speech. On the other hand, the audio-clue-
based approach, namely speaker extraction, utilizes a speaker-
dependent voiceprint [10], [11] obtained from an enrollment
utterance. Although these approaches have flourished inde-
pendently, some studies are recently trying to integrate them
as an audio-visual-clue-based approach. In this approach,
the visual and voiceprint clues can work complementarily,
and thus models become robust against temporal occlusion
of lip movements [8], [9] or contamination in enrollment
utterances [9]. Note that both clues are designed to extract
the same on-screen target speech. Our method is also one of
the audio-visual-clue-based approaches, but we use the two
clues to extract different target speech signals.

B. Denoising

While the proposed method estimates the target mixture
by additively extracting two speech signals from the input
audio, our goal might be achieved by subtractively suppressing
sounds other than the two speech signals contained in the input

audio. Such approaches are called selective noise suppres-
sion [13] or audio-only speech enhancement [14], [15]. Selec-
tive noise suppression removes only unnecessary noises using
their enrollment recordings without removing necessary noises
(e.g., alarms), and audio-only speech enhancement removes
all non-speech sounds uniformly. However, these approaches
are actually not appropriate for our goal because they require
all enrollment recordings of unnecessary noises prepared in
advance or fail to remove unnecessary speech. In contrast,
our additive approach requires only one enrollment utterance
in advance to work in any unknown acoustic conditions.

III. PROPOSED METHOD

This section explains the proposed framework that directly
extracts the mixture of the on-screen and off-screen target
speech from the noisy input audio. We also present the
attention mechanism and muting strategy that are uniquely
motivated by the framework to improve the model’s perfor-
mance in multi-target and multi-modal speaker extraction.

A. Framework
Our model is a time-domain encoder-decoder model overall

(Fig. 2(a)). It consists of five parts: audio encoder, visual
encoder, voiceprint encoder, multi-speaker extractor, and au-
dio decoder. The audio encoder transforms the noisy input
audio waveform into initial time-variant latent representations
zin0 (t) ∈ RDin

(t = 1, ..., T ), where Din and T are the
dimension of each latent representation and the number of
time frames, respectively. The visual encoder extracts time-
variant embeddings zv(t) ∈ RDv

from a sequence of cropped
lip images in the input video synchronized with the on-screen
target speech, where Dv is the dimension of each embedding.
Note that the last layer of the encoder conducts upsampling
to match the temporal resolution of zin0 (t). The voiceprint
encoder extracts a time-invariant speaker embedding za ∈ RDa

from the enrollment utterance to represent the voice character-
istics of the off-screen target speaker (e.g., pitch and timbre),
where Da is the dimension of the embedding. Given zv(t), za,
and zin0 (t), the multi-speaker extractor calculates time-variant
masks zinR(t) ∈ RDin

which are applied to zin0 (t), where R is
the number of iterations (explained below). Then, the audio
decoder estimates the target audio from the masked initial
latent representations of the input mixture.

For the visual and voiceprint encoder, we use the corre-
sponding encoding modules of existing AV-SE and speaker
extraction models, respectively. The other three parts are based
on a time-domain speech separation model Conv-TasNet [16].
Below, we focus on the multi-speaker extractor, which is the
heart of the proposed framework. The multi-speaker extractor
consists of R consecutive extractor blocks (Fig. 2(b)) and they
form zinR(t) by iteratively processing zin0 (t) conditioned by an
audio-visual clue instead of a single-modal clue as in AV-SE or
speaker extraction. Let r be an iteration index (r = 1, ..., R).
zv(t) and za are individually processed by pointwise convo-
lution layers and transformed to zvr(t)∈RDav

and zar∈RDav

,
where Dav is the dimension of each embedding. We sum
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(a) Overall architecture of our model. (b) The r-th extractor block.

Fig. 2. Illustration of our model. ⊙, ⊗, ⊕, and # represent element-wise multiplication, multiplication between a vector and scalar, summation, and
concatenation, respectively. (a) Overall architecture based on Conv-TasNet [16]. (b) Details of the r-th extractor block. The dotted arrows are only performed
when we use the attention mechanism.

their normalized embeddings, z̃vr(t) and z̃ar , and obtain an
audio-visual embedding zavr (t) ∈ RDav

. zavr (t) is concatenated
with zinr−1(t) and processed by temporal convolutional network
(TCN) stack [17]. The output of the TCN stack, zinr (t), is
used for the next iteration. After R iterations, the initial latent
representation zin0 (t) is multiplied by the estimated mask zinR(t)
element-wisely and put into the audio decoder. The entire
model is trained end-to-end so that a scale-dependent signal-
to-noise ratio (SNR) [18] is maximized:

SNRdB = −Lon+off = 10 log10
∥s∥2

∥ŝ− s∥2
, (1)

where s and ŝ are the clean and estimated signals, respectively.
When we consider extracting each target speech individually

and mixing them, one of the main drawbacks is the accumu-
lation of estimation errors, such as artifacts and remaining
non-speech noises or interfering speech. In contrast, since the
proposed model extracts both target speech signals in a lump,
we can avoid this problem and further conduct end-to-end
training. The proposed model is also computationally efficient
because, unlike the mixing-based approach, we need only one
model to obtain the output mixture.

B. Attention mechanism
While the visual clue is time-variant and depends on

(i.e., synchronized with) the on-screen target speech [1], the
voiceprint clue is time-invariant and independent of (i.e., not
synchronized with) the off-screen target speech [10]. To fill
this gap, we prompt the multi-speaker extractor to refer to
the voiceprint clue only when the off-screen target speech
temporally exists in the noisy input audio by the attention
mechanism [19]. Specifically, we use the speaker-dependent
voice activity detection (SDVAD) network [20], which takes
noisy speech as an input and estimates whether the target
speaker is active at each frame using the speaker embedding.

The off-screen target speech detection network for the SD-
VAD method takes as an input the element-wise multiplication
between zar and zinr−1(t) and estimates ar(t) ∈ [0, 1] at
each time frame as shown in Fig. 2(b). ar(t) represents the
confidence that t-th frame of the noisy input contains the active
off-screen target speech. We utilize ar(t) as an attention that
controls the contribution of z̃ar to zavr (t) as follows:

zavr (t) = z̃vr(t) + ar(t)z̃
a
r. (2)

Following [20], the off-screen target speech detection network
is trained such that the cross-entropy LCE between ar(t) and
the oracle voice activity (1 if the speech exists and 0 otherwise)
is minimized. The entire model is trained in a multi-task
learning manner under the total loss function Ltotal:

Ltotal = Lon+off + λLCE, (3)

where λ is a hyperparameter to control the weight of the cross-
entropy loss function.

C. Muting strategy

To further improve the performance of our model, we
introduce a novel training strategy, which we call the mut-
ing strategy. While the proposed model refers to two clues
from different domains, it outputs a mixture of two speech
signals without distinction. Thus the model does not explic-
itly interpret the correspondence between each clue and the
characteristics of the target speech of the clue. Each clue
can further contribute to extracting the precise target speech
by encouraging the model to learn the correspondence more
precisely. We, therefore, mute one of the on-screen or off-
screen target speech signals at certain probabilities during
training (at pon for on-screen and poff for off-screen). Since
this forces the model to output only either of the two target
speech signals, the model strongly binds each clue and the
characteristics of the corresponding signal.

IV. EVALUATION

This section describes experiments to evaluate the perfor-
mance of our method for multi-speaker extraction. We con-
sider four conditions where the target mixture is contaminated
by environmental sound noise and/or interfering speech.
A. Data

We used the VoxCeleb2 dataset [21], WSJ0 corpus [22], and
AudioSet [23] for the on-screen target speech, off-screen target
speech, and environmental sound noise, respectively. The
VoxCeleb2 consists of speech signals and their synchronizing
videos of the speaker’s face region, while WSJ0 consists of
only speech signals labeled with speaker identity. AudioSet
contains audio clips labeled with multiple classes (527 classes
in total), such as human voices, music, and sounds of things.
For the training and validation, we used 25,000 (800 speakers),
12,776 (101 speakers), and 18,870 clips in the VoxCeleb2
training set, WSJ0 “si tr s” set, and the balanced training
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TABLE I
COMPARISON OF THE BASELINE METHOD AND THE PROPOSED METHOD ON THE CONDITIONS WITH ENVIRONMENTAL SOUND NOISE (“NOISE”) AND

WITH AN INTERFERING SPEAKER (“SPK”). AM AND MS REFER TO THE ATTENTION MECHANISM AND MUTING STRATEGY, RESPECTIVELY.

Methods AM MS
“noise” condition “spk” condition

#Params ↓
SI-SDRi (dB) ↑ SDRi (dB) ↑ SI-SDRi (dB) ↑ SDRi (dB) ↑

Baseline A [20], [24] - - 7.34 7.19 7.58 7.96 29.8M

Proposed A

- - 7.56 7.37 8.25 8.56 25.1M
- ✓ 7.67 7.47 8.44 8.78 25.1M
✓ - 7.77 7.57 8.29 8.56 25.1M
✓ ✓ 8.06 7.88 8.73 9.11 25.1M

Baseline r [11], [17] - - 7.78 7.65 8.22 8.60 53.0M

Proposed r

- - 8.40 8.19 9.49 9.77 19.2M
- ✓ 8.55 8.37 9.80 10.10 19.2M
✓ - 8.42 8.21 9.71 9.98 19.2M
✓ ✓ 8.58 8.41 9.91 10.21 19.2M

↑ means higher is better, and ↓ means lower is better.

subset of the AudioSet, respectively. Each set was split into a
training set (80%) and a validation set (20%). For the test, we
used 3,000 (118 speakers), 1,857 (18 speakers), and 3,000 clips
in the VoxCeleb2 test set, WSJ0 “si dt 05” and “si et 05”
sets, and the evaluation subset of the AudioSet, respectively.
Note that, in the VoxCeleb2 and WSJ0, speakers in the test
set were unseen in the training and validation set.

With these datasets, we generated 20,000, 5,000, and 3,000
pairs of noisy input audio and the synchronizing video for
the training, validation, and test sets. All sounds and videos
were resampled to 16 kHz and 25 fps. We generated the input
audio by mixing an off-screen target speech and a four-second
environmental sound noise into a four-second on-screen target
speech with random SNR between -2.5 and 2.5 dB. The off-
screen target speech was cropped to have a random duration
between two and four seconds for the training and validation
and between zero and four seconds for the test. We randomly
selected the enrollment utterance from the other utterances of
the off-screen target speaker. We also conducted an experiment
where the target mixture is contaminated by another speaker
(“spk”) instead of AudioSet noise (“noise”). Moreover, exper-
iments with both AudioSet noise and an interfering speaker
(“noise+spk”) and with two interfering speakers (“2spk”)
were conducted. In these situations, interfering speech was
randomly selected from the VoxCeleb2 or WSJ0.
B. Model configuration

For the visual encoder, we used the visual encoder of AV-
ConvTasnet [24] (Proposed A) or the attractor encoder of the
reentry [17] (Proposed r), with Dv of 512 or 256, respectively.
Note that the attractor encoder takes the additional noisy audio
as an input as well as the video. In our implementation,
AV-ConvTasnet was a slightly modified version [24] of the
original [25]. For the voiceprint encoder, we used WASE [20],
where Da was 256. Finally, we used AV-ConvTasnet [24]
for the audio encoder, TCN stack, and audio decoder. The
parameters of the extractor block Dav, Din, and R were set
to 256, 256, and 4, respectively. λ, pon, and poff were set to
1.0, 20%, and 20%, respectively.

We trained all models with an Adam optimizer for 200
epochs. The learning rate was initialized to 0.001 and halved

if the validation loss did not improve for three epochs. Early
stopping was applied if the learning rate dropped four times.
Note that the optimizations for Proposed A and Proposed r
follow the methods used in AV-ConvTasnet and the reentry,
respectively. Specifically, for Proposed A, we optimized our
entire model except for the pre-trained visual encoder’s front-
end [26], which consists of a 3D convolutional layer and
ResNet18 block. For Proposed r, we optimized our entire
model except for the SLSyn network [17] of the visual
encoder, which was pre-trained to extract speech-lip synchro-
nization embeddings in reentry, and then fine-tuned the entire
model with the re-initialized optimizer.

C. Evaluation metrics
We evaluated our method in terms of estimation accuracy

and computational efficiency. We did the estimation accuracy
for the multi-speaker extraction using scale-invariant signal-
to-distortion ratio [27] improvement (SI-SDRi) and signal-
to-distortion ratio [18] improvement (SDRi), measuring the
amount of distortion in estimated signals. We did the compu-
tational efficiency by the number of model parameters.

D. Baseline methods
We set two baseline methods, which individually extract

the on-screen and off-screen target speech using AV-SE and
speaker extraction, respectively, and then mix them. Specifi-
cally, we used the combination of AV-ConvTasnet and WASE
(Baseline A) and that of the reentry and SpEx++ [11] (Base-
line r). We selected AV-ConvTasnet and WASE because their
network and Propoed A consist of Conv-TasNet conditioned
with a clue (note that only WASE has the skip-connection
paths [16]). This enables a fair comparison between the direct
and separative approaches at a framework-level since the
audio-visual clue is obtained with the same encoders as those
of the direct one. The reentry and SpEx++ are state-of-the-
art in each task. These AV-SE and speaker extraction methods
were originally evaluated on the VoxCeleb2 and WSJ0, re-
spectively. Thus we used the datasets not to deteriorate the
two baseline methods rather than the proposed method. In all
loss functions, we used SNR instead of the original SI-SDR
to retain the scale of signals for the mixing operation.
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Fig. 3. Grid search of pon and poff for Proposed A on the conditions with
environmental sound noise (“noise”).

TABLE II
EVALUATION UNDER COMPLEX INTERFERING CONDITIONS.

Interference Methods SI-SDRi (dB) ↑ SDRi (dB) ↑

noise+spk

Baseline A 6.17 6.70
Proposed A 6.35 6.96
Baseline r 7.34 7.91
Proposed r 7.53 8.14

2spk

Baseline A 6.28 6.73
Proposed A 5.66 6.19
Baseline r 7.46 7.94
Proposed r 7.59 8.08

E. Experimental results
Table I shows the experimental results on the conditions

with environmental sound noise and with an interfering
speaker. Proposed A outperformed Baseline A in SI-SDRi
and SDRi, which indicates that our direct estimation method
works well for accurate estimation. Our method can improve
performance only by changing the visual encoder to a state-
of-the-art encoder. Then, Proposed r outperformed even the
combination of the state-of-the-art methods, Baseline r. Fur-
ther, the ablation studies on the attention mechanism and
muting strategy show that each method can improve the
performance of our framework although the improvement is
small in Proposed r. Figure 3 shows that the muting strategy
tends to be effective only when pon + poff is not so large.

The computational efficiency of the proposed method is
shown in the rightmost column of Table I. As we adopted the
single-path framework (single sequence of the audio encoder,
TCN stacks, and audio decoder) unlike the dual-path baseline
framework, the number of parameters of Proposed A is fewer
than that of Baseline A by 16%. Proposed r is significantly
lightweight compared to Baseline r because the reentry and
SpEx++ have modules that do not appear in our simple
network for their state-of-the-art performance. The rightmost
column also shows that we can use the attention mechanism
with a very slight parameter increase and apply the muting
strategy without increasing a single model parameter. Table II
compares the baseline and the proposed method on the more
complex interfering speech conditions. Here again, our method
outperformed the combination of the state-of-the-art methods.

V. CONCLUSION

This paper presented an AV-SE method that estimates the
mixture of on-screen and off-screen target speech from noisy
audio. We fused two multimodal clues to extract the target
mixture in a computationally efficient manner. We also in-

troduced the attention mechanism and proposed the muting
strategy to improve the performance of our model further.
We experimentally confirmed that our method estimated the
target mixture more accurately and efficiently compared to the
baseline method. Our future work includes the evaluation of
our method using more realistic data. We also plan to extend
the proposed method to extract non-speech off-screen target
sounds, such as alarms and sirens.
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