
GPU Acceleration of MIP Intra Prediction in VVC
Iago Storch12, Nuno Roma23, Daniel Palomino4, Sergio Bampi1

1Graduate Program in Computing, Institute of Informatics, Federal University of Rio Grande do Sul, Porto Alegre - Brazil
2Instituto de Engenharia de Sistemas e Computadores - Investigação e Desenvolvimento (INESC-ID), Lisboa - Portugal

3Instituto Superior Técnico, Universidade de Lisboa, Lisboa - Portugal
4Federal University of Pelotas, Graduate Program in Computing, Video Technology Research Group, Pelotas - Brazil

{icstorch, bampi}@inf.ufrgs.br, nuno.roma@inesc-id.pt, dpalomino@inf.ufpel.edu.br

Abstract—The Versatile Video Coding (VVC) standard intro-
duced several novel encoding tools for intra frame prediction,
increasing the encoder complexity when compared to previous
standards. Among these novelties is the MIP tool, whose accelera-
tion has not been tackled in the literature. Therefore, an efficient
parallelization of MIP prediction targeting GPU platforms is
now proposed. The presented technique makes use of alternative
reference samples and computes the distortion in an approximate
manner to expose and potentiate massive parallelism. Moreover,
the adopted prediction scheduling and memory communication
were tailored by considering the GPUs’ architecture and memory
hierarchy. When compared with a CPU execution, this work is
capable to accelerate the MIP prediction up to 105 times at the
cost of a negligible coding efficiency loss of 0.284% BD-BR.

Index Terms—parallel video coding, intra prediction, OpenCL

I. INTRODUCTION

To comply with the growing demand for coding efficiency,
new video coding standards have introduced new tools to
deal with several encoding aspects. A remarkable example of
this trend is the Versatile Video Coding (VVC) [1], which
introduced major novelties in the intra prediction, such as the
Matrix-based Intra Prediction (MIP) and Intra Sub-partitions
(ISP) [1]. However, video coding is known for being burden-
some and more tools increases that problem. Thus, several
authors have proposed distinct methods to accelerate intra pre-
diction in VVC. The authors of [2], [3] propose sophisticated
techniques to evaluate fewer angular modes; [4] uses machine-
learning to discard unlikely modes (angular and ISP); while [5]
uses machine-learning to accelerate ISP. However, algorithmic
solutions like these do not have the same acceleration potential
as the ones provided by parallel-processing.

Modern computing systems usually provide multiple pro-
cessing cores alongside hardware accelerators such as GPUs.
Although GPUs were originally designed to accelerate graph-
ics, their massively-parallel architecture and the availability of
convenient APIs (such as OpenCL and CUDA) led GPUs to
be used in several applications – including video coding.

Galiano et al [6] accelerate the HEVC intra prediction by
computing the distortion of each mode in GPU. However,
they do not exploit the full potential of GPUs since part of

This study was financed in part by the Coordenação de Aperfeiçoamento de
Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001, FAPERGS,
CNPq, and Fundação para a Ciência e a Tecnologia (FCT) under project
UIDB/50021/2020.

the prediction is still conducted in the CPU and there is a
large communication overhead. In [7], the authors propose a
GPU+CPU scheme to implement the whole intra prediction of
HEVC, including distortion and bitrate estimates. These au-
thors use the original samples as references to simultaneously
conduct the prediction of multiple blocks in the GPU.

In summary, current algorithmic solutions [2]–[5] to acceler-
ate intra prediction can hardly provide the massive acceleration
provided by GPUs, although the existing proposals using
GPUs [6], [7] only consider the angular prediction. However,
VVC introduced other intra prediction tools, including MIP.
Although its execution pattern is particularly suitable for the
massively-parallel architecture of GPUs, its acceleration (using
GPUs) has not been covered in the literature. Thus, this work
is the first to tackle the acceleration of MIP prediction by a
specifically designed modeling aiming at GPU execution.

II. MATRIX-BASED INTRA PREDICTION (MIP) IN VVC
A. VVC Partitioning and Intra Mode Decision

In VVC, a frame is divided into a regular grid composed
of Coding Tree Units (CTUs) with at most 128×128 samples.
Each CTU is recursively partitioned into Coding Units (CUs),
by following a sequence of splits using binary, ternary, and
quaternary trees [1]. Due to the novel binary and ternary splits,
the CUs can be either square-shaped or rectangular. Moreover,
CUs of the same size are not necessarily aligned with each
other as was the case of previous standards; this is depicted in
Fig. 1, which highlights 16×16 CUs produced using different
split sequences. Each square with a blue or green circle rep-
resents one 16×16 CU, and the symbols “BH,BV,TH,TV,QT”
represent a sequence of splits used to produce the CU: binary
horizontal/vertical, ternary horizontal/vertical, or quaternary.
The CUs highlighted in blue are produced using only qua-
ternary splits (as in previous standards); all of such CUs
are aligned with each other forming a grid. However, the
CUs highlighted in green are produced combining binary and
ternary splits, and they may not be aligned with each other
and with those highlighted in blue. In summary, the possible
positions for the same CU size can overlap, but it is not
possible to simultaneously use overlapping positions.

Besides defining the partition sizes, it is necessary to
define the intra prediction mode with the best rate-distortion
(RD) tradeoff for each CU. Since conducting an exhaustive
evaluation is too time-consuming, the VTM encoder uses a

600ISBN: 978-9-4645-9360-0 EUSIPCO 2023

QT-QT-TV-BH QT-QT-TH-TV

QT-QT-QT QT-QT-TH-BV

Aligned
Not aligned

Fig. 1. Example of 16×16 CUs obtained through different split sequences.

well-known decision method based on Rough Mode Decision
(RMD), Most Probable Modes (MPM), and Rate-Distortion
Optimization (RDO) [8]. This scheme is presented in the upper
part of Fig. 3. The RMD stage conducts a fast evaluation of
several modes and creates a list of the most promising ones,
called rd-list. Here, VTM conducts the prediction, computes
the distortion of the predicted block, and estimates the bitrate
using a simplified context. The distortion is estimated accord-
ing to the Sum of Absolute Differences (SAD) and the Sum
of Absolute Transformed Differences (SATD). During RMD
the encoder tests most of the angular prediction modes, the
most probable modes (MPM, discussed later) with multiple
reference lines (MRL tool), and all MIP modes for the current
CU (which can be as much as 32). Each mode is checked
against the modes on the rd-list such that, after concluding
RMD, the rd-list has a subset of the modes with the best rd-
costs to be evaluated by the RDO [8]. Then, the MPMs without
MRL are always added to the rd-list. MPM is a list of 6 very
likely modes based on the adjacent blocks.

Then the encoder enters RDO procedure and conducts a
thorough evaluation of the modes in the rd-list. This evaluation
involves computing the distortion of the reconstructed block
and computing the bitrate using the appropriate contexts and
entropy encoder. After RDO, the mode with the lowest rd-cost
is selected to encode the current block [8].

B. Matrix-based Intra Prediction (MIP)

MIP is a new prediction concept introduced in VVC based
on data-driven models. Although the original design of MIP
was based on feeding a neural network with reference samples,
it was simplified into a matrix-vector multiplication due to
complexity issues [1]. An overview of the MIP procedure is
presented in Fig. 2, where W and H represent the CU width
and height, respectively. The MIP mode is applied to CUs with
dimensions equal to 64×64, 32×32, 32×16, 16×32, 32×8,
8×32, 16×16, 16×8, 8×16, 32×4, 4×32, 16×4, 4×16, 8×8,
8×4, 4×8, and 4×4. These CUs are grouped into three sets
according to SizeId={0, 1, 2}. SizeId=0 comprehends 4×4
CUs, SizeId=1 comprehends 8×8 CUs and CUs with exactly
one side of length equal to 4; whereas SizeId=2 comprehends
the remaining sizes. The number of MIP modes for SizeId
equal to 0, 1, and 2 is equal to 16, 8, and 6, respectively, and
every mode has a transposed counterpart – which in practice
doubles the number of modes. Each MIP mode is represented
by a matrix of predefined coefficients that were obtained by
neural networks aiming to minimize the prediction error.

When a CU goes through MIP, the W reconstructed samples
directly above the CU (refT) and the H reconstructed samples
directly left of the CU (refL) are fetched. These samples are

refT

re
fL

redT

re
d

L

W

H
concat

redBound
AK●redBound

Reduced
prediction

Complete
prediction

Averaging Matrix-vector Multiplication Linear Interpolation

MIP mode k

Fig. 2. Overview of MIP prediction.

called complete boundaries. Then, these complete boundaries
are averaged to create reduced top (redT) and left (redL)
boundaries. Each reduced boundary has either 2 samples (for
SizeId=0) or 4 samples (for SizeId={1,2}). In sequence, the
reduced top and left boundaries are concatenated to obtain
redBound. For non-transposed MIP modes redT is taken first,
whereas for transposed modes redL is taken first.

In the next stage, a reduced prediction is obtained through
a matrix-vector multiplication. The inputs are redBound (a
vector) and the current MIP mode (matrix AK). The reduced
prediction has dimensions 4×4 for SizeId={0,1} and 8×8 for
SizeId=2. For SizeId=0, the obtained reduced prediction has
the same dimension as the original CU; for SizeId={1,2}, the
reduced prediction must be upsampled to match the CU size.

The final upsampling is conducted using linear interpolation,
first in the horizontal and then in the vertical direction. refL
and refT are used as the leftmost and uppermost references,
respectively. A thorough discussion of MIP is available in [1].

III. PROPOSED PARALLELIZATION AND IMPLEMENTATION

The RMD stage of intra prediction requires testing all MIP
modes for each CU. It involves the computation of up to 32
MIP predictions for each CU. Furthermore, the rd-list cannot
be completed and sent to RDO until all MIP modes (and the
other tools inside RMD) are evaluated. However, the MIP
prediction stage presents a great parallelization opportunity
that can be explored to accelerate the mode decision and the
generation of the rd-list. In this context, this work focuses on
exploiting a GPU to accelerate the evaluation of MIP modes
during RMD, aiming a faster processing of the rd-list.

An overview of the proposed GPU parallelization model,
alongside the main intra prediction stages, is depicted in Fig. 3,
where the numbers in red circles represent the order in which
the data is exchanged between the host and the GPU, and
inside the GPU – these will be referred to as “data #”, where
is a number. The main idea is that prior to RMD the reference
samples are fed to the GPU (data 1), and the GPU produces
the distortion for all MIP modes of all CUs. When the encoder
has to check a MIP mode during RMD, it can simply fetch the
corresponding distortion (data 8) and determine if it should
be in the rd-list. The intermediate exchanges (data 2-7) occur
inside the GPU during the prediction process.

Three GPU kernels are proposed to conduct the major MIP
steps. The produceBoundaries kernel produces the complete
and reduced boundaries; the reducedPred kernel obtains the
reduced prediction for all modes; and the upsampleDist kernel
upsamples the reduced prediction and computes the distortion
of each mode. The GPU main memory serves as an interface
between the host and GPU, and between the GPU kernels.

601

Hence, the main contributions of this work comprehend the
following aspects related to the GPU parallelization of MIP
prediction using OpenCL API, which will be further detailed
in the next subsections.

• Definition of alternative reference samples for MIP pre-
diction to expose massive parallelism (Section III-A);

• Usage of specific SIMD instructions to efficiently conduct
the prediction (Section III-C);

• Parallelization model at the 4×4 Hadamard-based SATD
computation (Section III-D);

• A comprehensive set of memory optimizations to allevi-
ate the communication overhead and to better explore the
memory hierarchy.

A. Top-level Scheduling and Parallelism Exposition

Although GPUs are designed to execute massively-parallel
tasks, the dependencies between adjacent blocks during intra
prediction turn it inherently sequential. To break these depen-
dencies, this work employs the same technique also used by
Radicke [7] for angular prediction by adopting the original
samples of the frame (that are always available) as reference
samples for MIP prediction during RMD. This way, any CU
can be predicted without depending on other CUs.

The proposed parallelization model conducts the MIP pre-
diction of all CTUs and CU sizes concurrently, at the same
time. In particular, each OpenCL workgroup is scheduled to
conduct the prediction of a whole CTU, composed of multiple
CUs with a specific dimension. However, the novel binary
and ternary splits introduced by VVC [1] allow some CUs
to be in positions that are not aligned with the quadtree
structure, as discussed in Fig. 1. For CU sizes with this
property, multiple workgroups are assigned to process the
same CU size, where each workgroup deals with CUs with
a different alignment. This improves the processing regularity
and promotes a better memory communication. Finally, the
proposed modeling considers that CUs are always indexed in
raster order to improve data locality in memory accesses.

B. Boundaries Computation

This kernel fetches the samples of the current CU from
global memory (data 2), produces the complete and reduced
boundaries, and stores them in global memory again (data 3).

The produceBoundaries kernel processes CUs in batches.
First, it obtains the top and the left boundaries of the CUs in
the current batch, then proceeds to the next batch, where each
batch is composed of an integer number of CU rows/columns.
When computing the top boundaries of CUs that are hori-
zontally adjacent, a single row of CUs is processed in each
batch. When there are horizontal gaps between the CUs, such
as “QT-QT-TV-BH” and “QT-QT-TH-TV” (see Fig. 1), two
rows are processed in each batch – only half of the samples
in each row are relevant. The same strategy is employed for
the left boundaries, where the number of considered columns
depends on the vertical gaps between CUs.

Starting with the top boundaries, each workitem fetches
exactly one sample to compose the complete boundary of one

7GPU MAIN MEMORY (GLOBAL)

MIP PREDICTION KERNELS (GPU)

produceBoundaries reducedPred upsampleDist

samples boundaries
2 3

boundaries reducedPred boundaries
reducedPred

distortion
4 5 6 7

INTRA PREDICTION PIPELINE (HOST)

MPM RDOSTART END

samples distortion81

rd-list

RMD
Angular MRL MIP*

*up to 32 modes

Fig. 3. Overview of the proposed modeling.

CU in the current batch. Workitems WIi and WIi+1 fetch
the complete boundary samples refTj and refTj+1, such
that the global memory reads are coalesced. These complete
boundaries are stored in the local memory of the workgroup. In
sequence, the reduced top boundaries are computed and also
stored in local memory. Since the reduced boundaries have
either 2 or 4 samples, a different schedule is employed. For
4×4 CUs, workitems WI0 and WI1 compute the reduced
boundaries for CU0, WI2 and WI3 compute the reduced
boundaries for CU1, and so on such that the work is focused on
as few warps/wavefronts as possible (i.e., fewer multiproces-
sors). For the remaining CU sizes a similar scheduling is used.
However, 4 workitems are assigned to each CU. In summary,
only 2 or 4 workitems per CU are active in this stage. Once
the reduced top boundaries for the current batch are computed,
the top boundaries for the next batch can be computed.

After computing all top boundaries of the CTU, the data is
offloaded to the global memory. The boundaries of sequential
CUs are stored in sequential positions in memory to make
the data layout friendlier in the next kernels. Considering that
GPU memories are optimized to move chunks of data in each
access, offloading all boundaries at once into a contiguous
memory region is more efficient than offloading the boundaries
individually, which would cause bursts of memory accesses.

The procedure that computes the left boundaries is similar,
but each batch is composed of one or two columns of CUs.
Due to the CTU dimensions, each row/column of samples
has at most 128 elements; therefore, this kernel uses 128
workitems per workgroup in the proposed implementation.

C. Reduced Prediction Computation
The reducedPred kernel fetches the reduced boundaries

(data 4) and produces the reduced prediction (data 5). For
each prediction mode, the prediction signal of a whole batch of
CUs is produced in parallel. Hence, once the current prediction
mode is applied to all CUs of the current batch, the next
batch can start. Once a mode is applied to all batches of CUs,
the next mode is tested. The reduced prediction of CUs with
SizeId={0,1} has 4×4 samples, while for CUs with SizeId=2
it has 8×8 samples (16 and 64 samples, respectively). Each
predicted sample is produced by one workitem. Thus, 16 or
64 workitems work together to predict each CU. Sequential
workitems process sequential samples in each CU.

For a given prediction mode (and batch of CUs), each
workitem fetches the top and left reduced boundaries of
one CU and concatenates them accordingly. The computation
pattern of MIP prediction allows breaking the matrix-vector

602

multiplication (AK ·redBound in Fig. 2) into several dot prod-
uct operations, where each predicted sample is a dot product
between the reduced boundaries (identical to all samples in
the same CU) and a line of coefficients extracted from AK

(distinct for each sample). Therefore, all predicted samples of
a given CU are obtained in parallel by a single dot product
operation of each workitem [8]. Since GPUs have special
SIMD instructions to conduct dot product, it is performed very
efficiently. The reduced prediction of all CUs with a particular
prediction mode is stored in local memory, and when all
CUs are predicted, the prediction signal is offloaded to global
memory. Then, the next prediction mode can be considered
and the same process is repeated, reusing the local memory.
The proposed implementation of the reducedPred kernel uses
256 workitems per workgroup, and either 4 or 16 CUs per
CTU are concurrently processed, depending on SizeId.

D. Upsample and Distortion Computation

The upsampleDist kernel evaluates the reduced prediction
(data 6) and computes the distortion (data 7), processing CUs
in batches. First, the original samples and boundaries for CUs
in the current batch are transferred to local memory. This data
is used to compute the distortion of all modes for each CU.

For one mode, the reduced prediction of all CUs in the batch
is fetched into local memory. During horizontal upsampling,
sequential workitems compute the upsampled signal for sam-
ples in sequential positions, and the result is stored in local
memory. The complete left boundaries are used as leftmost
references. When the horizontally-upsampled prediction has
more samples than the number of workitems assigned to such
CU, multiple passes are required. When the current CU size
does not require horizontal upsampling (i.e., CUs 4×16), this
stage copies the reduced prediction into a temporary buffer.
The vertical upsampling is similar, but the complete top bound-
ary is used as uppermost reference to match the CU width.
Whenever the block does not require vertical upsampling, the
horizontally-upsampled signal is bypassed into the final buffer.

Then, the distortion is estimated using the SAD and SATD
metrics. For SAD, sequential workitems compute the absolute
difference for sequential samples inside the CUs, and each
workitem stores the intermediary result in local memory.
When a CU has more samples than workitems, each workitem
computes the absolute difference of multiple strided samples
and accumulate them. When all samples in each CU are
processed, the SAD for each CU is obtained by parallel
reduction, and the result is stored in local memory.

The SATD distortion adopted by VTM uses Hadamard
transforms of variable sizes, such that larger blocks use larger
transforms [8]. However, this computation presents large data
dependencies since several samples are required at once. The
proposed parallelization employs an approximate SATD based
solely on the 4×4 Hadamard transform. The CU is divided
into 4×4 patches. Then, similar to SAD, each workitem
process one or more patches and the intermediary values are
accumulated in local memory. The SATD for each CU is
obtained by parallel reduction of the intermediary SATDs.

Finally, when the SAD and SATD distortion of all CUs is
computed, the distortion is offloaded to global memory.

The VTM encoder estimates the bitrate for MIP prediction
during RMD stage based on two features: (i) the current split
sequence and context, and (ii) the current MIP mode and
SizeId. Since the proposed parallelization conducts MIP for all
possible CUs (irrespective of the split sequence) and it does
not have access to the host’s previous decisions, this bitrate is
hardly computed on the GPU side. However, since each pair
of SizeId and MIP mode always yield the same bitrate, this
bitrate can be easily estimated with an if-else structure on the
host, thus avoiding the communication overhead that would
be observed if this computation was performed at the GPU.

The proposed implementation of upsampleDist uses 256
workitems per workgroup. Moreover, CUs with SizeId equal
to 0, 1, and 2 are processed by 16, 32, and 128 workitems
– this equals the number of samples of the smaller CU size
in each SizeId. Therefore, 16, 8, and 2 CUs are concurrently
processed for CUs with SizeId equal to 0, 1, and 2.

IV. EXPERIMENTAL VALIDATION

The proposed parallelization was implemented in a stan-
dalone module to validate its performance. For the sake of
obtaining a compliant bitstream, the two proposed modifica-
tions over the original encoding (alternative references and
distortion) were applied on a specially devised encoder, also
based on VTM [8]. The encoding followed the Common Test
Conditions [9] of VTM with the all intra configuration. The
first 64 frames are encoded and the subsample ratio is 1. The
performance is assessed with speedup and coding efficiency.

The speedup compares the time to execute MIP during
RMD of VTM (running in the CPU) against the time to exe-
cute MIP on GPU. The processing time in GPU encompasses
the kernel execution and the data transfer between host and
GPU. The coding efficiency was measured in terms of BD-
BR [10], which represents the bitrate increase required by the
proposed implementation to achieve the same quality as the
reference. Larger BD-BR represents worse coding efficiency.

The experimental validation was conducted on the hardware
platforms specified in Table I. Here, “Cores” refers to the
number of processing units on the devices: physical cores for
Intel CPUs, CUDA cores for NVIDIA GPUs, and Streaming
Processors for AMD GPUs. All VTM encodings are conducted
with SIMD optimizations enabled in CPU I, running CentOS
7 with the AVX2 instruction set. The proposed parallelization
implementation was executed on three GPUs: GPU I runs
Ubuntu 16.04 while GPU II and III run CentOS 7.

The experimental results are presented in Table II, where
“GPU I, GPU II, GPU III” represent the speedup achieved
by each GPU. The “Base.” column presents the BD-BR of
the proposed modeling when compared to the unmodified
reference encoder. An ablation study was also conducted to
assess the coding efficiency when disabling MIP completely;
the BD-BR of this encoder is presented in the “Ablat.” column.

The results from Table II show that the proposed paralleliza-
tion model and implementation achieve a significant speedup

603

TABLE I
HARDWARE USED FOR EXPERIMENTAL EVALUATION.

System Device (RAM) Boost freq. Cores
CPU I Intel Core i9-7900X (64 GB) 4.3 GHz 10
GPU I NVIDIA GTX 1080 (8 GB) 1.733 GHz 2560
GPU II NVIDIA Titan V (12 GB) 1.455 GHz 5120
GPU III Radeon RX 6900 XT (16 GB) 2.250 GHz 5120

when compared to the encoding on the CPU. When consid-
ering 1080p videos, the average speedup obtained by GPU I,
GPU II and GPU III is 33.6, 79.6, and 75.3, respectively. For
4k videos, the corresponding average speedup is 25.7, 53.3,
and 66.9. The observed variation between video sequences
occurs because the reference encoder in the CPU applies early
termination heuristics that make the encoder test a different
number of CUs depending on the video content. In contrast,
the proposed modeling always processes all blocks, leading
to a regular processing time. In addition to that, GPU II and
GPU III have significantly more computing power than GPU
I. Therefore, they are able to present a higher speedup. This
is only possible because the proposed modeling exposes more
opportunities to exploit the parallelism by using alternative ref-
erence samples and processing multiple CU sizes and modes
concurrently, alongside a memory communication designed
for GPU architectures. Finally, it is observed that GPU III
performs slightly worse than GPU II when processing 1080p
videos, but GPU III outperforms GPU II when considering 4k
videos. This occurs because GPU III has an extra cache level
when compared to GPU II. Since the MIP prediction kernels
require moving large amounts of data, this extra cache plays
an important role when considering larger resolutions.

With respect to the coding efficiency, it is observed that
the proposed parallelization model achieves an average coding
degradation of 0.231% and 0.328% BD-BR for 1080p and 4k
videos, respectively. Although the coding efficiency is identical
irrespective of the platform, these penalties come from the two
approximations introduced in the proposed model: the use of
original samples as references and the estimation of the SATD
based solely on the 4×4 Hadamard. These approximations
slightly interfere with the distortion estimate and may lead
the encoder to occasionally select MIP modes that may not
be optimal. Finally, the presented ablation study shows that
when the MIP mode is completely disabled, the average coding
degradation for 1080p and 4k videos is 0.558% and 0.858%
BD-BR, respectively. These results show that although the
proposed modeling slightly penalizes the coding efficiency,
the proposed GPU-accelerated MIP decision still remains
advantageous over the alternative of not using MIP at all.

To the best of authors’ knowledge, there are no other
works in the literature accelerating the MIP prediction, either
with CPU, GPU, or dedicated accelerators. Nonetheless, some
works use GPUs to accelerate the angular intra prediction.
Galeano et al [6] use GPUs to compute the distortion of
angular modes in HEVC, accelerating this process by 6 times.
Since they do not interfere with the encoder decisions, there
is no coding efficiency variation. Radicke et al [7] use a

TABLE II
RESULTS OF THE PROPOSED MODELING AND IMPLEMENTATION.

Speedup BD-BR[%]
Video GPU I GPU II GPU III Base. Ablat.
BasketballDrive 31.5 74.5 71.1 0.219 0.515
BQTerrace 41.6 99.0 94.4 0.105 0.375
Cactus 44.5 105.4 97.0 0.184 0.563
MarketPlace 34.4 81.4 77.6 0.258 0.697
RitualDance 16.1 38.0 36.4 0.387 0.641
Average 1080p 33.6 79.6 75.3 0.231 0.558
Campfire 29.5 60.3 77.4 0.297 0.733
CatRobot 26.4 54.3 69.4 0.314 0.658
DaylighRoad 37.4 77.2 98.5 0.141 0.192
FoodMarket 8.8 18.1 23.0 0.249 1.939
ParkRunning 30.9 63.9 79.5 0.229 0.561
Tango 21.2 45.9 53.9 0.736 1.064
Average 4k 25.7 53.3 66.9 0.328 0.858

CPU+GPU scheme to perform angular intra prediction in
HEVC and compute the respective costs in RMD and RDO
stages. This work accelerates the whole intra prediction be-
tween 1.9 and 4.44 times with an average BD-BR degradation
between 2.797% and 3.981%, depending on the operating
point. Although our work cannot be directly compared to
[6] and [7], it is clear that it provides competitive results.
Furthermore, our proposal can be combined with related works
to accelerate the angular prediction as well.

V. CONCLUSION

This work proposed the first parallelization model and the
respective implementation for the VVC MIP prediction aiming
at GPU execution. This modeling exposes the opportunity
to exploit the massive parallelism from the MIP tool by us-
ing alternative reference samples and concurrently processing
several blocks and modes, which allows to extract the most
throughput out of GPUs. The obtained experimental results
showed that this proposal is capable of accelerating the MIP
prediction in up to 105 times at the cost of a minor coding
efficiency penalty of around 0.284% BD-BR.

REFERENCES

[1] B. Bross et al, “Overview of the versatile video coding (vvc) standard
and its applications,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 31, no. 10, pp. 3736–3764, 2021.

[2] A. Gou et al, ”Fast Intra Mode Decision for VVC Based on Histogram
of Oriented Gradient,” 2022 IEEE International Symposium on Circuits
and Systems (ISCAS), Austin, TX, USA, 2022, pp. 3028-3032.

[3] Y. Chen et al, ”A novel fast intra mode decision for versatile video
coding,” in Journal of Visual Communication and Image Representation,
vol. 71, no. 1, pp. 1-11, 2020.

[4] X. Dong et al, ”Fast Intra Mode Decision Algorithm for Versatile Video
Coding,” in IEEE Trans. on Multimedia, vol. 24, pp. 400-414, 2022.

[5] J. Park et al, ”Machine Learning-Based Early Skip Decision for Intra
Subpartition Prediction in VVC,” in IEEE Access, vol. 10, 2022.

[6] V. Galiano et al., ”GPU-based HEVC intra-prediction module,” in
Journal of Supercomputing, vol. 73, pp. 455-468, 2017.

[7] S. Radicke et al, ”A Parallel HEVC Intra Prediction Algorithm for
Heterogeneous CPU+GPU Platforms,” in IEEE Transactions on Broad-
casting, vol. 62, no. 1, pp. 103-119, 2016.

[8] ”VVC Test Model (VTM),” available in
https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware VTM.

[9] F. Bossen et al., ”JVET-T2010: VTM common test conditions and
software reference configurations for SDR video,” Document, Oct. 2020.

[10] G. Bjøntegaard, ”VCEG-M33: Calculation of average PSNR differences
between RD-curves,” Document, Mar. 2001.

604

