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Abstract—Recent studies have shown that physiological signals
related to blood pressure and heart rate can be estimated in
a contactless modality from facial videos using remote pho-
toplethysmography (rPPG). This has paved the way to the
development of techniques that can acquire and manipulate the
rPPG signals recoverable from facial videos without affecting
their visual appearance. The goal of this paper is to analyze the
detectability of this new kind of forgery, here referred to as rPPG
deepfake videos. Specifically, we propose a two-stream method
based on the analysis of rPPG deepfake videos at both spatial
and temporal levels. The experimental results obtained from
tests performed on samples taken from two distinct databases
demonstrate that our method performs better than popular deep
learning methods in the rPPG deepfake detection task.

Index Terms—Remote photoplethysmography (rPPG), Face
forgery detection, Video forensics.

I. INTRODUCTION

Physiological signals related to blood pressure and heart
rate (HR) are important vital signs that can be measured
in many circumstances, especially for healthcare or medi-
cal purposes. Traditionally, electrocardiography (ECG) and
photoplethysmography (PPG) [1] are the two most common
ways for evaluating heart activities and the corresponding
physiological signals. However, both ECG and PPG sensors
need to be attached to the body, thus causing discomfort and
inconvenience for users in everyday life. In order to mitigate
this issue, remote photoplethysmography (rPPG) has been
developed in the recent years, to estimate, in a contactless
modality, relevant heart-related parameters from facial videos.
Therefore, rPPG can be used in many applications, ranging
from remote healthcare to affective computing [2].

Given the relevance that rPPG techniques are recently gain-
ing, methods have also been proposed to manipulate the rPPG
signals that can be acquired from facial videos. For instance,
methods to conceal rPPG in facial videos have been explored
in [3], [4]. In [5]–[7], it has been also proposed to tamper the
rPPG signals form facial videos in order to obtain a specific
estimated heart rate(see Figure1). Although the motivations
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Fig. 1. The pipeline of rPPG deepfake generation. The original facial video
is processed so that the manipulated facial video will be visually identical to
the original video, while the associated rPPG signal is modified.

behind such methods may be based on legitimate needs,
such as privacy protection [6] or the demand for expanding
the diversity of rPPG datasets [7], it is worth remarking
that rPPG deepfake videos, where the physiological signals
estimated from a facial video are intentionally edited, may
also represent a notable potential threat, since they could be
used to impersonate or deceive medical professionals, or even
for criminal activities.

To address this issue, we here propose a two-stream method
for the detection of rPPG deepfake videos, by learning spatial-
and temporal-level features. In more details, given the very
limited perturbations in the skin color space brought by rPPG
deepfake generation, our approach relies on the suppression of
the image content, in order to capture possible subtle artifacts.
To this aim, we employ a steganalytic network [8], which
first extracts the image residuals using high-pass filters and
then feeds them into a convolutional neural network (CNN)
model, thus extracting spatial-level stream features. On the
other hand, we note that the heart rate estimated from fake
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videos may be inconsistent in different subregions of the
face. Thus, we first transform the video clips into spatial-
temporal maps, which encode the HR signals from multiple
region of interest (ROI) volumes on faces and then feed
them into a CNN-gated recurrent unit (GRU) model [9], to
extract temporal-level stream features. The two models are
trained independently, and their outputs are fused to take the
final decisions. Experimental tests carried out on two public
databases prove the effectiveness of our proposed method in
the rPPG deepfake detection task. The main contributions of
this paper are summarized as follows:

• to the best of our knowledge, this is the first work that
attempts to detect rPPG deepfakes;

• we analyze the properties of rPPG deepfake videos cre-
ated with state-of-the-art algorithms and propose a two-
stream learning framework for their detection;

• the obtained experimental results demonstrate that our
method outperforms several popular competitors pro-
posed to detect standard deepfake videos.

II. RELATED WORKS

A. Remote Photoplethysmography

Remote photoplethysmography is a non-invasive technique
for estimating heart-related physiological signals by analyzing
changes in skin color caused by blood flow from facial videos.
Traditional approaches [10]–[12] have evaluated the feasibility
of extracting the information of interest under different prior
assumptions for the considered facial videos. With the de-
velopment of deep learning technology, many learning-based
methods [9], [13]–[16] have also been developed for rPPG
estimation, currently achieving reliable performance.

B. Deepfake Video Detection

Deepfake techniques refer to a series of deep-learning-
based forgery techniques that can swap or reenact the face
of one person in a video in another [17]. The past five
years have witnessed a wide variety of methods proposed
to counteract the malicious usage of deepfakes. Early works
focus on handcrafted features such as eyes-blinking and visual
artifacts. Due to the tremendous success of deep learning,
CNNs have been widely used to detect deepfakes [18]–
[20], commonly achieving better performance than traditional
methods. In addition, approaches relying on rPPG signals have
been proposed for the detection of deepfakes [21]. In this
work, we take a different perspective and attempt to detect
for the first time a specific kind of deepfake, consisting in the
modification of the rPPG signals.

C. Biometric Recognition with rPPGs

The analysis of rPPG signals has been used within the field
of biometrics for liveness detection purposes [22], [23], with
the aim of evaluating whether a subject performing a face-
based recognition process is wearing a mask or not [24].
The rPPG signal recovered from a facial video has been
also exploited as a biometric identifier [25]. The possibility
of generating rPPG deepfakes, as proposed in the works
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convolutional attention network. In [23], the authors proposed a STVEN net-
work to enhance hidden rPPG information from highly compressed videos and
an rPPGNet to predict rPPG signals.

2.2 Data Augmentation

Data augmentation has been widely adopted to alleviate the shortage of well-
labeled training data. Traditional augmentation methods include image flipping,
rotating, cropping, scaling, shifting, and so on. With the success of Generative
Adversarial Networks (GANs) [6,19,25] and autoencoder [16] in generating high
fidelity data, many methods are proposed to use generators to automate the data
augmentation. In [6], the authors used conditional GANs to achieve both age
progression and regression. In [9], the authors utilized 3D avatars to synthesize
facial videos with blood flow and breathing patterns. In [25], the authors pro-
posed an unsupervised method with cycle-consistency to solve image-to-image
translation from unpaired data. In [16], the authors proposed a multi-task frame-
work to predict rPPG signals and to augment data simultaneously.

Fig. 3. The proposed RErPPG-Net, which consists of a Removal-Net GR and an
Embedding-Net GE . The rPPG-removed video xr is expected to carry no rPPG signal;
whereas the rPPG-embedded video xt is expected to carry the specified signal st.

3 Proposed Method

3.1 Overview

In this paper, we propose a RErPPG-Net to augment existing rPPG datasets
by embedding ground-truth PPG signals into any existing facial videos. As
shown in Fig. 3, the proposed RErPPG-Net consists of a Removal-Net GR and
an Embedding-Net GE and aims to remove any inherent rPPG signals exist-
ing in the input videos and then to embed the specified PPG signals into the
rPPG-removed videos. To train the model from unpaired videos, we propose a
novel double-cycle consistent learning to enforce the Embedding-Net GE and
the Removal-Net GR to learn to robustly and accurately embed and remove the
delicate rPPG signals.

Fig. 2. Architecture of RErPPG-Net [7].

mentioned in the following section, is therefore a relevant
threat in the biometric framework.

D. rPPG Deepfake Video Generation

Given the several applications of rPPG that are rapidly
emerging, novel deepfake algorithms, able to edit the physio-
logical signals detectable from facial videos without affecting
their visual appearance, have been also recently proposed [3]–
[7], as mentioned in Section I.

The state-of-the-art rPPG manipulation approach, consid-
ered for the generation of rPPG deepfake videos in the
tests we have performed, consists in RErPPG-Net [7], an
architecture operating under the cycle generative adversarial
learning framework. The goal of RErPPG-Net is to augment
existing rPPG datasets by embedding ground-truth rPPG sig-
nals into any existing facial videos. As shown in Figure 2,
the proposed RErPPG-Net consists of a Removal-Net GR and
an Embedding-Net GE . It aims to remove any inherent rPPG
signals existing in the input videos and then to embed the
target rPPG signals into the rPPG-removed videos. To train
the model from unpaired videos, RErPPG-Net proposes a
novel double-cycle consistent learning approach to enforce the
Embedding-Net GE and the Removal-Net GR to learn how to
robustly and accurately embed and remove the delicate rPPG
signals. As detailed in Section IV, we employ RErPPG-Net
on the PURE [26] and UBFC-rPPG [27] datasets to generate
the rPPG deepfake videos used in our experiments.

III. PROPOSED RPPG DEEPFAKE DETECTOR

The proposed rPPG detection approach relies on the analysis
of specific characteristics of rPPG deepfake videos. In more
details, the goodness of rPPG deepfake videos, generated as
in [7], can be evaluated through the perceptual quality of the
manipulated videos, measured in terms of peak signal to noise
ratio (PSNR) and structural similarity metric (SSIM) between
the original and edited videos. Moreover, in order to determine
if a target rPPG signal has been properly embedded into the
modified video, the mean absolute error (MAE) between the
heart rate detected in the manipulated videos, measured by
PhysNet [13], and the target one, can be computed.

As shown in Table I, high PSNR and SSIM indexes suggest
that RErPPG-Net hardly introduces perceptual distortion on
the subject’s appearance. This fact demonstrates that RErPPG-
Net perturbs the skin pixels in the video frames by a small
amount when editing the rPPG signals, thus introducing a kind
of non-stationary noise, similarly to how several steganogra-
phy methods manipulates images [28], [29].
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TABLE I
PERFORMANCES OF THE GENERATED RPPG DEEPFAKE VIDEOS.

Datasets PSNR SSIM MAE
PURE [26] 50.73 0.9921 4.39

UBFC-rPPG [27] 52.71 0.9947 2.66

Real Face:

Whole Face:1.31 

Forehead: 1.01

Cheeks: 1.22

Fake Face:

Whole Face: 3.28

Forehead: 5.01

Cheeks: 6.61

Fig. 3. MAE performance of HR estimation from the two facial subregions
(forehead and cheeks).

It has also to be observed that, for original face videos,
the results of rPPG estimation are typically consistent over
different face subregions. To examine this property, we analyze
the MAE of rPPG signals in two facial subregions, i.e.,
forehead and cheeks, and estimate the heart rate using the
plane-orthogonal-to-skin (POS) algorithm [12] included in the
rPPG-Toolbox [30]. As shown in Figure 3, the MAE measured
by different face subregions in the rPPG deepfake video varies
greatly, demonstrating that rPPG deepfakes cannot guarantee
a global consistency of rPPG information on the face.

In this work, we propose a two-stream framework, depicted
in Fig. 4, to detect rPPG deepfake videos. Details on the
proposed spatial- and temporal-level streams, and on their
combined use, are given in the following.
A. Spatial-level Stream

As previously mentioned, the manipulation on rPPG signals
brings very subtle perturbations to the video. Therefore, we
employ UCNet [8], that is, a universal steganalysis network
for color images, to extract spatial-level features. Specifically,
UCNet consists of preprocessing, convolutional, and classifi-
cation modules. The preprocessing module first extracts the
image residuals from each color channel with 62 fixed high-
pass filters, and then concatenate them for the subsequent
modules. The convolutional module contains three carefully-
designed types of layers with different shortcut connections
and group convolution structures, to further learn the high-
level steganalytic features. The classification module consists
of a global average pooling and a fully connected layer for
classification. For each video, the average of all the prediction
scores over the processed frames are computed as a final
prediction score r1. The binary cross-entropy loss LBCE is
applied to train the proposed spatial-level stream.
B. Temporal-level Stream

In order to detect potential inconsistencies in rPPG estima-
tion created by possible manipulations, we employ a spatial-
temporal map (STmap) [9], designed to learn robust rPPG
features from the facial ROI-based spatio-temporal signal
map. Such approach can enforce the input to the succeeding
network to be as specific as possible to the heart rate signal,
and leverage CNN to learn informative representation for it.

UCNet

RhythmNet

Video frames by face 
alignment

. . .
. . .

Video Clips

STMap 
Generator

𝑟𝑟1

𝑟𝑟2

Softmax

Softmax

Spatial-level stream: 𝑺𝑺𝟏𝟏

Temporal-level stream: 𝑺𝑺𝟐𝟐

𝑁𝑁 × 𝐻𝐻 × 𝑊𝑊 × 𝑐𝑐
𝐻𝐻 × 𝑊𝑊 × 𝑐𝑐

1 × 2

1 × 2

𝑇𝑇 × 𝐻𝐻 × 𝑊𝑊 × 𝑐𝑐

𝑇𝑇 × 𝑛𝑛 × 𝑐𝑐

𝑟𝑟

𝑣𝑣1

𝑣𝑣𝑙𝑙

Fig. 4. Overall framework of our proposed method. We first perform face
and landmark detection on each frame for face alignment to obtain an input
facial video sequence with the size of N ×H ×W × c.
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Fig. 9. Overview of our RhythmNet. Given an input video sequence, we first divide it into multiple short video clips (v1, v2, · · · , vt ), and perform face and
landmark detection on each frame for face alignment. Then spatial-temporal maps are generated from the aligned face images per video clip to represent the
HR signals, and a deep network consisting of convolutional layers and recurrent layers is trained to predict the HR from the spatial-temporal maps. Finally,
the HR estimated for the input video sequence is computed as the average of all the estimated HRs from individual video clips.

Fig. 10. An illustration of spatial-temporal map generation from face video. We first align faces across different frames based on the detected facial landmarks,
and transform the aligned face images to YUV color space. Then the facial area is divided into n ROI blocks R1, R2, · · · , Rn , and the average color value
is computed for each color channel within each are concatenated into a sequences, i.e., Y1, U1, V1, Y2, U2, V2, · · · , Yn , Un , Vn . These n ∗ c sequences are
placed into rows to form a spatial-temporal map with the size of T × n × c.

and facial landmarks detection is able to run at a frame rate of
more than 30 fps, we perform face detection and landmarks
detection on every frame in order to get accurate and consistent
ROI facial areas in a video sequence. A moving average filter
is also applied to the 81 facial landmarks across frames to get
more stable landmark locations.

In order to make full use of all the informative parts con-
taining the color changes due to heart rhythms, we choose to
use the whole face area for further processing. Face alignment
is firstly performed using the eye centre points, and then a
face bounding box is defined with a width of w (where w is
the horizontal distance between the outer cheek border points)
and height 1.2 ∗ h (where h is the vertical distance between
chin location and eye eyebrow centre). Skin segmentation
is then applied to the defined ROI to remove the non-face
area such as eye region and background area. Since resizing
may introduce noise to the HR signals, we choose to use the
original face region cropped based on facial landmarks for
further processing.

B. Spatial-Temporal Map for Representing HR Signals

The only useful information for rPPG-based HR estimation
in face video is the skin color variations caused by variations
in volume and oxygen saturation of the blood in the vessels
due to heart beats, which are very minor in amplitude and
can be affected by head movements, illumination variations

and sensor noises. In order to suppress noises and improve
the SNR of HR signals, Most rPPG-based HR estimation
methods use the average pixel values of RGB channels of the
whole face as the HR signal representation [1], [2], [4], [7],
[19]. Such an average pooling representation provides better
robustness than each single pixel. This can be regarded as
the empirical rule, and can work smoothly for rPPG-based
HR estimation under various conditions. Unlike the existing
methods which only use the average pooling of ROI blocks to
compute the HR signal, we have proposed a spatial-temporal
map (see Fig. 10) to highlight the heart rhythm signals while
suppressing the other information irrelevant to heart rhythm.
Such a spatial-temporal map can enforce the input to the
succeeding network to be as specific as to the heart rhythm
signal, and make it possible for us to leverage CNN to
learn informative representation for the final HR estimation
task.

Specifically, for a video clip with T frames and c color
space dimensions, we first get the face areas for all the frames
as stated in IV-A. Then, the face area in each frame is divided
into n ROI blocks R1, R2, · · · , Rn . The amplitude of these
skin color variations are very weak, and average pooling has
been proven to be effective in removing noises in rPPG-based
HR estimation methods. Let C(x, y, t) denote the value at
location (x, y) of the t th frame from different dimensions of
the color space, and the average pooling of the i th ROI block
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Fig. 5. STmap generator proposed in [9]. Then the facial area is divided
into n ROI blocks R1, · · · , Rn , and the average color value is computed
for each color channel within each are concatenated into a sequences, i.e.,
Y1, U1, V1, · · ·Yn, Un, Vn. These n × c sequences are placed into rows to
form a spatial-temporal map with the size of T × n× c.

Specifically, we first divide the input facial video sequence
into multiple short video clips {v1, · · · , vl}. For each video
clip with T frames and c color space dimensions, we generate
the STmap using the pipeline shown in Figure 5. Eventually,
we get a spatial-temporal representation from the video clip
with size of T × n× c as input to the subsequent network.

We employ RhythmNet [9], that has been proposed to
learn the rPPG information in STmaps, as backbone network.
RhythmNet is a spatial-temporal framework consisting of a
cascade of a ResNet-18 [31] and a one-layer GRU [32]. This
latter is a recurrent cell consisting of a reset gate and an update
gate, employed to model the temporal relationship between
succeeding predictions. The output of the GRU is fed into
a fully-connected layer to compute the prediction scores for
each individual video clip. For a facial video, the average of all
the prediction scores over individual video clips is computed
as the final prediction score r2. The binary cross-entropy loss
LBCE is applied to train the temporal-level stream.

C. Two-Stream Score Fusion

The classification results of the processed videos are ac-
quired from the two streams. The final score r for a video is
obtained by combining the output scores of the two streams,
r = softmax (r1) + softmax (r2). Both r1 and r2 are vectors
containing two coefficients, representing the probability of
having an original or a fake facial video. The same informa-
tion, yet based on both a spatial- and temporal-level analysis,
can be retrieved from r, whose values are used to take a final
decision on the considered video.
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TABLE II
VIDEO-LEVEL SPLIT SETTING USED IN OUR EXPERIMENTS (FAKE:REAL).

Datasets Training Testing Description

PURE 105:105 72:72 First 6 subjects for training,
remaining 4 subjects for testing

UBFC-rPPG 90:90 36:36 First 30 subjects for training,
remaining subjects for testing

Total 195:195 108:108 Video size: 600× 200× 200

IV. EXPERIMENTS
A. Experimental Settings

1) Datasets: We have employed two popular public rPPG
datasets, i.e., PURE [26] and UBFC-rPPG [27], to generate
the rPPG deepfake videos in our experiments.

The PURE dataset [26] contains 6 videos from each of
10 subjects. Videos are recorded with subjects in different
conditions, namely (1) sitting still, (2) talking, (3) slowly
moving the head, (4) quickly moving the head, (5) rotating
the head with 20 degree angles, and (6) rotating the head
with 35 degree angles. All the videos are captured by an
evo274CVGE camera with resolution of 640 × 480 pixels
and 30 fps. We split the dataset into two disjoint training and
testing sets, respectively containing videos from the first 6 and
the remaining 4 subjects.

The UBFC-rPPG dataset [27] contains a single video taken
from each of 42 individuals. All the videos are recorded by a
Logitech C920 HD Pro with resolution of 640 × 480 pixels in
uncompressed 8-bit format, and 30 fps. We split the available
data into a training set with data from the first 30 subjects,
and a testing set with videos from the remaining 12 ones.

As in [7], the considered videos are cropped to a 200×200
ROI containing the subjects’ faces. Furthermore, to increase
the data diversity of both databases, from each original video
we select the first, middle and last 600 frames, and then we
get three video clips, each lasting 20 seconds. We shuffle the
corresponding rPPG signals of each of the video clips in the
dataset to set the target rPPG signal. Finally, we feed the video
clips and the target rPPG into the RErPPG-Net to generate the
fake videos. We thus obtain, for our experiments, a total of
606 real and fake videos, as summarized in Table II.

2) Evaluation metrics: In this work, all experimental results
are mainly reported in terms of accuracy (ACC), area un-
der curve (AUC) of a receiver-operating-characteristic (ROC)
curve, and EER (Equal Error Rate) at video level, for the
considered binary classification task on the testing set.

3) Implementation details: We performed all experiments
with PyTorch on a workstation equipped with one NVIDIA
Tesla V100 GPU (32GB memory). We implemented the
RErPPG-Net by their official code1. For training our proposed
method, we used the Adam optimizer with an initial learning
rate of 2×10−4 and the weight decay of 5×10−4. The batch
size was set to 8.

B. Experimental Results

The effectiveness of the proposed rPPG deepfake detector
is evaluated by comparing our approach against several pop-

1https://github.com/nthumplab/RErPPGNet

TABLE III
COMPARISON WITH THE PREVIOUS METHODS

Methods ACC AUC EER
MesoNet [33] 0.5185 0.5571 0.4314
ResNet18 [31] 0.5092 0.5321 0.4713
Xception [34] 0.5741 0.6152 0.4149

3D-ResNet18 [35] 0.6019 0.6721 0.3541
PhysNet-3DCNN [13] 0.7037 0.7846 0.2642

Our method 0.8892 0.9484 0.1255

TABLE IV
PERFORMANCES OF THE ABLATION STUDIES

Methods ACC AUC EER
Our method 0.8892 0.9484 0.1255

Spatial only (UCNet [8]) 0.8611 0.9170 0.1503
Temporal only (RhythmNet [9]) 0.8333 0.9086 0.1786

ular methods designed for fake video detection. Specifically,
MesoNet [33], ResNet18 [31], and Xception [34] are 2DCNN-
based approaches performing well in traditional deepfake de-
tection task. For them, we average the predictions on all frames
as final video prediction. The 3D-ResNet18 [35] is a network
commonly used for video analysis, while the PhysNet-3DCNN
[13] is frequently used for rPPG signal estimation and recov-
ery. We adapt the PhysNet-3DCNN network for identifying
rPPG deepfake videos directly. As shown in Table III, the
proposed method consistently achieves the best performance
among the considered methods over the employed data.

An ablation study has been also performed in order to
evaluate the effectiveness of each proposed stream. As shown
in Table IV, spatial-level features are more informative than
the temporal-level ones, yet the proposed combined use of
both schemes notably improves the achievable performance,
indicating that both spatial and temporal information should
be taken into account to perform rPPG deepfake detection.

To understand what visual clues our method rely on to detect
the rPPG deepfake videos, we visualize in Figure 6 the class
activation map (CAM) obtained using Smooth Grad-CAM++
[36]. We can observe that the high activation probability
regions are more evenly distributed over the whole face for
real images, while for fake images specific regions tend to
be highlighted. This is understandable since, as discussed
in Section III, rPPG deepefakes cannot guarantee a global
consistency of rPPG information on the face.

V. CONCLUSION

In this paper, we have presented a method to detect face
forgery videos that manipulate rPPG signals. The proposed
approach relies on the analysis of both spatial- and temporal-
level characteristics of the considered facial videos when per-
forming the required decisions. Experimental results obtained
on samples from two public databases demonstrate that our
proposed method can achieve promising performances for the
considered detection task.
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